K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 8 2021

\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2\)

\(=a^2+2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

1 tháng 11 2016

2(a-b)(c-b)+2(b-a)(c-a)+2(b-c)(a-c)

=2a^2+2b^2+2c^2-2bc-2ab-2ac

=a^2-2ac+c^2+a^2-2ab+b^2+b^2-2bc+c^2

=(a-c)^2+(a-b)^2+(b-c)^2

17 tháng 7 2018

Ta có: (a+b+c)^2 + a^2 + b^2 + c^2

= a^2 +b^2 +c^2 + 2ab + 2ac + 2bc + a^2 + b^2 + c^2

= (a^2 +2ab+ b^2) + (b^2 +2bc+ c^2) +(c^2 +2ac+ a^2 )

= (a+b)^2 +(b+c)^2 +(c+a)^2

17 tháng 7 2018

\(\left(a^2+b^2+c^2\right)+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

24 tháng 10 2019

=a^2+b^2+c^2=2ab+2bc+2ca+a^2+b^2+c^2

=(a^2+2ab+b^2)+(b^2+2bc+c^2)+(c^2+2ca+c^2)

=(a+b)^2+(b+c)^2+(c+b)^2

5 tháng 10 2017

Bài 2 :

a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)

\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)

a)x2-6x+9

=x2-2.x.3+32

=(x-3)2

b)4x2+4x+1

=(2x)2+2.2x.1+12

=(2x+1)2

c)4x2+12xy+9y2

=(2x)2+2.2x.3y+(3y)2

=(2x+3y)2

d)4x4-4x2+4

=(2x2)2-2.2x2.2+22

=(2x2-2)2

19 tháng 9 2021

a=(x+3)

b=(x+1/2)

c=(xy^2+1)

Good luck!

\(a,\left(x+3\right)^2\)

\(b,\left(x+\frac{1}{2}\right)^2\)

\(c,\left(xy^2+1\right)^2\)

4 tháng 7 2015

a)\(\left[\left(a-b\right)^2-2\left(a-b\right)\left(c-b\right)+\left(c-b\right)^2\right]-\left(a-b\right)^2-\left(b-c\right)^2=\left(a-b-c+b\right)^2-\left(a-b\right)^2-\left(b-c\right)^2\)

\(=\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2\) tương tự thì

A= \(\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2+\left(b-c\right)^2-\left(b-a\right)^2-\left(c-a\right)^2+\left(b-a\right)^2-\left(b-c\right)^2-\left(a-c\right)^2\)

\(=\left(a-c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2+\left(b-c\right)^2-\left(a-b\right)^2-\left(a-c\right)^2+\left(a-b\right)^2-\left(b-c\right)^2-\left(a-c\right)^2\)

\(=-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)