Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-5}{6}=\dfrac{-5\times4}{6\times4}=\dfrac{-20}{24}\)
\(\dfrac{3}{-8}=\dfrac{3\times\left(-3\right)}{-8\times\left(-3\right)}=\dfrac{-9}{24}\)
\(2=\dfrac{48}{24}\)
\(\dfrac{-25}{100}=\dfrac{-1}{4}=\dfrac{-1\times6}{4\times6}=\dfrac{-6}{24}\)
\(\dfrac{72}{108}=\dfrac{2}{3}=\dfrac{2\times8}{3\times8}=\dfrac{16}{24}\)
a) \(\dfrac{2}{5}=\dfrac{1}{5}\cdot\dfrac{2}{1}\)
\(\dfrac{15}{12}=\dfrac{5}{4}=\dfrac{5}{2}\cdot\dfrac{1}{2}\)
\(\dfrac{5}{-12}=\dfrac{-5}{12}=\dfrac{-5}{3}\cdot\dfrac{1}{4}\)
\(\dfrac{-3}{-4}=\dfrac{3}{4}=\dfrac{3}{2}\cdot\dfrac{1}{2}\)
a) \(\dfrac{1}{6};\dfrac{1}{3};\dfrac{1}{2};...\)
\(\Rightarrow\dfrac{1}{6};\dfrac{2}{6};\dfrac{3}{6};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{4}{6}\)
b) \(\dfrac{1}{8};\dfrac{5}{24};\dfrac{7}{24};...\)
\(\Rightarrow\dfrac{3}{24};\dfrac{5}{24};\dfrac{7}{24};...\)
Dãy có quy luật tăng dần lên 2 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{9}{24}\)
c) \(\dfrac{1}{5};\dfrac{1}{4};\dfrac{1}{3};...\)
\(\dfrac{4}{20};\dfrac{5}{20};\dfrac{6}{20};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{7}{20}\)
d) \(\dfrac{4}{15};\dfrac{3}{10};\dfrac{1}{3};...\)
\(\Rightarrow\dfrac{8}{30};\dfrac{9}{30};\dfrac{11}{30};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{12}{30}\)
26/65= 0,4
45/-250 = -0,18
2 3/8= 2,375
36/-400= -0,09
1 469/2000= 1,2345
a) \(\left\{{}\begin{matrix}\dfrac{1}{5}=\dfrac{1.6}{5.6}=\dfrac{6}{30}\\\dfrac{1}{6}=\dfrac{1.5}{6.5}=\dfrac{5}{30}\\\dfrac{2}{15}=\dfrac{2.2}{15.2}=\dfrac{4}{30}\\\dfrac{1}{10}=\dfrac{1.3}{10.3}=\dfrac{3}{30}\end{matrix}\right.\)
Quy luật: Tử số của mỗi phân số cách nhau \(1\) đơn vị, cùng chung mẫu số là \(30\).
Phân số tiếp theo: \(\dfrac{2}{30}=\dfrac{1}{15}\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{9}=\dfrac{1.5}{9.5}=\dfrac{5}{45}\\\dfrac{1}{15}=\dfrac{1.3}{15.3}=\dfrac{3}{45}\end{matrix}\right.\)
Quy luật: Tử số của mỗi phân số cách nhau \(1\) đơn vị, cùng chung mẫu số là \(45\).
Phân số tiếp theo: \(\dfrac{1}{45}\)
\(\dfrac{-1}{3}=\dfrac{-12}{36}\)
\(\dfrac{2}{3}=\dfrac{24}{36}\)
\(\dfrac{-1}{-2}=\dfrac{1}{2}=\dfrac{18}{36}\)
\(\dfrac{6}{-24}=\dfrac{-1}{4}=\dfrac{-9}{36}\)
\(\dfrac{-3}{4}=\dfrac{-27}{36}\)
\(\dfrac{10}{60}=\dfrac{1}{6}=\dfrac{6}{36}\)
\(\dfrac{-5}{6}=\dfrac{-30}{36}\)