K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2023

Gọi ptr chính tắc của `(E)` có dạng: `[x^2]/[a^2]+[y^2]/[b^2]=1`

Thay `A(0;-4)` vào `(E)` có:

           `16/[b^2]=1<=>b^2=16`

Vì `F_2 (3;0)=>c=3=>c^2=9`

Ta có: `a^2=b^2+c^2`

`<=>a^2=16+9`

`<=>a^2=25`

Vậy ptr chính tắc của `(E)` là: `[x^2]/25+[y^2]/16=1`

\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)(E)

Thay x=0 và y=-4 vào (E), ta được:

16/b^2=1

=>b=4

F2(3;0)

=>c=3

=>căn a^2-16=3

=>a^2-16=9

=>a=5

=>x^2/25+y^2/16=1

3 tháng 5 2023

F1(\(-\sqrt{3};0\)) => c=\(\sqrt{3}\)

có: \(b^2=a^2-c^2=a^2-3\)

pt elip di qua M:

\(\dfrac{3}{a^2}+\dfrac{1}{4b^2}=1\)

\(\Leftrightarrow\dfrac{3}{a^2}+\dfrac{1}{4a^2-12}=1\)

dat a^2=t (t>0)

\(\Leftrightarrow\dfrac{3}{t}+\dfrac{1}{4t-12}=1\\ \Leftrightarrow12t-36+t=4t^2-12t\)

\(\Leftrightarrow4t^2-25t+36=0\\ \Leftrightarrow\left[{}\begin{matrix}t=4\\t=\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a^2=4\\a^2=\dfrac{9}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}b^2=1\\b^2=-\dfrac{3}{4}\left(loai\right)\end{matrix}\right.\)

=>ptelip: \(\dfrac{x^2}{4}+\dfrac{y^2}{1}=1\)

 

1: (E): x^2/a^2+y^2/b^2=1

Thay x=0 và y=3 vào (E), ta được:

3^2/b^2=1

=>b^2=9

=>b=3

F2(5;0)

=>c=5

=>\(\sqrt{a^2-9}=5\)

=>a^2-9=25

=>a^2=34

=>\(a=\sqrt{34}\)

=>x^2/34+y^2/9=1

2: Thay x=7 và y=0 vào (E), ta được:

7^2/a^2+0^2/b^2=0

=>a^2=49

=>a=7

Thay x=0 và y=3 vào (E), ta được:

0^2/a^2+3^2/b^2=1

=>b^2=9

=>b=3

=>(E): x^2/49+y^2/9=1

3: Thay x=0 và y=1 vào (E), ta được:

1/y^2=1

=>y=1

=>(E): x^2/a^2+y^2/1=1

Thay x=1 và y=căn 3/2 vào (E), ta được:

1^2/a^2+3/4=1

=>1/a^2=1/4

=>a^2=4

=>a=2

=>(E); x^2/4+y^2/1=1

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Phương trình chính tắc của elip có dạng: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\).

Elip đi qua \(A\left( {5;0} \right)\) nên ta có \(\frac{{{5^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Leftrightarrow {a^2} = 25\)

Mặt khác elip có một tiêu điểm \({F_2} = \left( {3;0} \right)\) nên ta có \(c = 3\), suy ra \({b^2} = {a^2} - {c^2} = 25 - {3^2} = 16\)

Vậy phương trình của elip là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\).

F2(5;0)

=>c=5

(E): x^2/a^2+y^2/b^2=1

Thay x=0 và y=3 vào (E), ta được:

9/b^2=1

=>b=3

c^2=a^2-b^2

=>a^2=5^2+3^2=34

=>(E): x^2/34+y^2/9=1

F1(-2;0) nên c=-2

=>c^2=4

=>c^2=a^2-b^2=4

=>a^2=b^2+4

(E): x^2/a^2+y^2/b^2=1

Thay x=2 và y=3 vào (E), ta được:

2^2/a^2+3^2/b^2=1

=>4/a^2+9/b^2=1

=>\(\dfrac{4}{b^2+4}+\dfrac{9}{b^2}=1\)

=>\(\dfrac{13b^2+36}{b^2\left(b^2+4\right)}=1\)

=>b^4+4b^2-13b^2-36=0

=>b^2=12

=>b=2căn 3

=>a=4

=>(E): x^2/16+y^2/12=1

26 tháng 4 2023

^cái này là kí hiệu j v

1 tháng 10 2018

8 tháng 5 2019

Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)

Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)

Vậy đường thẳng Δ có dạng: x+y-3=0

Vì đường tròn có tâm I thuộc d nên I(a;-a)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì đường tròn đi qua A, B nên I A 2  = I B 2  ⇒ (3 - a ) 2  + a 2  = a 2  + (2 + a ) 2  ⇔ (3 - a ) 2  = (2 + a ) 2

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình đường tròn có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Ta có: 

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Giả sử elip (E) có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì (E) đi qua B nên:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình chính tắc của elip (E) là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)