Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đường thẳng cần tìm có phương trình dạng \(\frac{x}{a}+\frac{y}{b}=1\) với \(ab\ne0\) suy ra \(\frac{1}{a}+\frac{2}{b}=1\) (1) và \(\left|a\right|=\left|b\right|\) (2)
Từ (2) suy ra hoặc a=b hoặc a=-b.
- Khi a=b, thay vào (1) ta được \(\frac{1}{a}+\frac{2}{a}=1\Leftrightarrow a=3\)
Vậy \(\Delta:\frac{x}{3}+\frac{y}{3}=1\) hay \(x+y-3=0\)
- Khi a=-b thay vào (1) ta được \(\frac{1}{a}-\frac{2}{a}=1\Leftrightarrow a=-1\) vậy \(\Delta:\frac{x}{-1}+\frac{y}{1}=1\) hay \(x-y+1=0\)
Vậy ta tìm đươc 2 đường thẳng đi qua M và chắn trên 2 trục tọa độ các đoạn thẳng bằng nhau là
\(x+y-3=0\) và \(x-y+1=0\)
Lời giải
đường thẳng chắn trên hai trucj tọa đọ hai đoạn thẳng = nhau => Hệ số góc k=-1 hoặc 1
\(\left\{{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\) đi qua điểm M \(\left\{{}\begin{matrix}b=2-1=1\\b=2+1=3\end{matrix}\right.\)
Phương trình hệ số đường thẳng cần tìm
\(\begin{matrix}d1:y=x+1\\d2:y=-x+3\end{matrix}\)
Phương trình tổng quát
d1: x-y-1=0
d2:x+y-3=0
Lời giải
Chọn C
Do M( 1; 4) thuộc góc phần tư thứ I nên để d chắn trên 2 trục tọa độ những đoạn bằng nhau thì đường thẳng d cần tìm song song với đường thẳng d: y= -x.vậy đường thẳng cần tìm có phương trình –(x-1) = y- 4 hay x+ y- 5= 0.
A(0;y); B(x;0)
Theo đề, ta có: 0+x=10 và y+0=-6
=>x=10 và y=-6
=>A(0;-6); B(10;0)
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có:
0a+b=-6 và 10a+b=0
=>b=-6 và a=3/5
Đường tròn \((C)\) tâm \(I(a;b)\) bán kính \(R\)có phương trình
\((x-a)^2+(y-b)^2=R^2.\)
\(∆MAB ⊥ M\) \(\rightarrow \) \(AB\) là đường kính suy ra \(∆\) qua \(I\) do đó:
\(a-b+1=0 (1)\)
Hạ \(MH⊥AB\) có \(MH=d(M, ∆)= \dfrac{|2-1+1|}{\sqrt{2}}={\sqrt{2}} \)
\(S_{ΔMAB}=\dfrac{1}{2}MH×AB \Leftrightarrow 2=\dfrac{1}{2}2R\sqrt{2} \)
\(\Rightarrow R = \sqrt{2} \)
Vì đường tròn qua\(M\) nên (\(2-a)^2+(1-b)^2=2 (2)\)
Ta có hệ :
\(\begin{cases} a-b+1=0\\ (2-a)^2+(1-b)^2=0 \end{cases} \)
Giải hệ \(PT\) ta được: \(a=1;b=2\).
\(\rightarrow \)Vậy \((C) \)có phương trình:\((x-1)^2+(y-2)^2=2\)
a: A(1;2); B(2;1)
=>\(\overrightarrow{AB}=\left(1;-1\right)\)
=>VTPT là (1;1)
Phương trình đường thẳng AB là:
1(x-1)+2(y-1)=0
=>x-1+2y-2=0
=>x+2y-3=0
b:
M(1;3); Δ: 3x+4y+10=0
Khoảng cách từ M đến Δ là:
\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)