K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

Δ:x−y−1=0.Δ:x−y−1=0. ⇒⇒ VTPT của ΔΔ −→nΔ=(1;−1).nΔ→=(1;−1).

Đường thẳng (d)(d) vuông góc với đường thẳngΔ:x−y−1=0.Δ:x−y−1=0.

⇒⇒ VTPT của ΔΔ là VTCP của (d).(d).

⇒⇒ VTCP của (d)(d) là −−→u(d)=(1;−1).u(d)→=(1;−1).

⇒⇒ VTPT của (d)(d) là −−→n(d)=(−1;1).n(d)→=(−1;1).Ta có: Đường thẳng (d)(d) nhận −−→n(d)=(−1;1);n(d)→=(−1;1); đi qua điểm A(1;2).A(1;2).⇒y=−1(x−1)+1(x−2).⇔y=−x+1+x−2.⇔y=−1.

5 tháng 3 2022

\(\Delta:x-y-1=0.\) \(\Rightarrow\) VTPT của \(\Delta\) \(\overrightarrow{n_{\Delta}}=\left(1;-1\right).\)

Đường thẳng \(\left(d\right)\) vuông góc với đường thẳng\(\Delta:x-y-1=0.\)

\(\Rightarrow\) VTPT của \(\Delta\) là VTCP của \(\left(d\right).\)

\(\Rightarrow\) VTCP của \(\left(d\right)\) là \(\overrightarrow{u_{\left(d\right)}}=\left(1;-1\right).\)

\(\Rightarrow\) VTPT của \(\left(d\right)\) là \(\overrightarrow{n_{\left(d\right)}}=\left(-1;1\right).\)Ta có: Đường thẳng \(\left(d\right)\) nhận \(\overrightarrow{n_{\left(d\right)}}=\left(-1;1\right);\) đi qua điểm \(A\left(1;2\right).\)\(\Rightarrow y=-1\left(x-1\right)+1\left(x-2\right).\\ \Leftrightarrow y=-x+1+x-2.\\ \Leftrightarrow y=-1.\)
14 tháng 4 2021

đáp án là uân tánh

14 tháng 4 2021

Thôi thôi ko trả lời đc thì đừng có nói

1: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=-2\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=1-2a=1-2\cdot\left(-3\right)=7\end{matrix}\right.\)

2: Vì (d)//y=-3x+2 nên a=-3

Vậy: y=-3x+b

Thay x=3 và y=3 vào y=-3x+b, ta được:

b-9=3

hay b=12

23 tháng 2 2022

sao ngắn v bn @@

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

NV
7 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt

Phương trình AB:

\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.

Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)

\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)

Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)

2 tháng 5 2023

loading...  d lâu r ko làm ko nhớ -)(

31 tháng 5 2021

1.

\(\left(C\right):x^2+y^2-2x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)

Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)

Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)

Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)

\(\Leftrightarrow m=-1\pm\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)

31 tháng 5 2021

2.

Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)

\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)

\(\Leftrightarrow m=-1\pm2\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)