Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b: \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{6a^2}{24}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{a}{2}\)
c: \(\sqrt{5a\cdot45a}-3a=-15a-3a=-18a\)
a) \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}\)
\(=\sqrt{\dfrac{2a\cdot3a}{3\cdot8}}\)
\(=\sqrt{\dfrac{6a^2}{24}}\)
\(=\sqrt{\dfrac{a^2}{4}}\)
\(=\dfrac{\sqrt{a^2}}{\sqrt{4}}\)
\(=\dfrac{a}{2}\)
b) \(\sqrt{3a}\cdot\sqrt{\dfrac{52}{a}}\)
\(=\sqrt{3a\cdot\dfrac{52}{a}}\)
\(=\sqrt{3\cdot52}\)
\(=\sqrt{13\cdot3\cdot4}\)
\(=2\sqrt{39}\)
c) \(2y^2\cdot\sqrt{\dfrac{x^4}{4y^2}}\)
\(=2y^2\cdot\dfrac{\sqrt{\left(x^2\right)^2}}{\sqrt{\left(2y\right)^2}}\)
\(=2y^2\cdot\dfrac{x^2}{-2y}\)
\(=\dfrac{2y^2\cdot x^2}{-2y}\)
\(=-x^2y\)
\(\sqrt{\dfrac{2a}{3}.}\sqrt{\dfrac{3a}{8}=\sqrt{\dfrac{2a}{3}.\sqrt{\dfrac{3a}{8}}}=\sqrt{\dfrac{2.a}{3.8}}}\)
\(=\sqrt{\dfrac{\left(2.3\right)\left(a.a\right)}{3.8}=\sqrt{\dfrac{6a^2}{24}}}\)
\(=\sqrt{\dfrac{6a^2}{6.4}}=\sqrt{\dfrac{a^2}{4}=}=\sqrt{\dfrac{a^2}{2^2}}\)
\(=\sqrt{\dfrac{a}{2}}^2=\dfrac{a}{2}\)
Vì \(a>0\) nên \(\dfrac{a}{2}>0\)\(=\dfrac{a}{2}\)
\(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}.Với,a\ge0,Ta,Có,\dfrac{\sqrt{2a}}{\sqrt{3}}\cdot\dfrac{\sqrt{3a}}{\sqrt{8}}=\dfrac{\sqrt{2a}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}\cdot\dfrac{\sqrt{3a}\cdot\sqrt{8}}{\sqrt{8}\cdot\sqrt{8}}=\dfrac{\sqrt{6a}}{3}\cdot\dfrac{\sqrt{24a}}{8}=\dfrac{\sqrt{6a}\cdot\sqrt{24a}}{3\cdot8}=\dfrac{\sqrt{144a^{^2}}}{24}=\dfrac{\sqrt{\left(12a\right)^{^2}}}{24}=\dfrac{\left|12a\right|}{24}=\dfrac{12a}{24}=\dfrac{a}{2}\)
`M=sqrt{(3a-1)^2}+2a-3`
`=|3a-1|+2a-3`
`=3a-1+2a-3(do \ a>=1/3)`
`=5a-4`
`N=sqrt{(4-a)^2}-a+5`
`=|4-a|-a+5`
`=a-4-a+5(do \ a>4)`
`=1`
`I=sqrt{(3-2a)^2}+2-7`
`=|3-2a|-5`
`=3-2a-5(do \ a<3/2)`
`=-2-2a`
`K=(a^2-9)/4*sqrt{4/(a-2)^2}`
`=(a^2-9)/4*|2/(a-2)|`
`=(a^2-9)/(2|a-2|)`
Nếu `3>a>2=>|a-2|=a-2`
`=>K=(a^2-9)/(2(a-2))`
Nếu `a<2=>|a-2|=2-a`
`=>K=(a^2-9)/(2(2-a))`
\(M=\left|3a-1\right|+2a-3\)
Mà \(a-\dfrac{1}{3}\ge0\)
\(\Rightarrow M=3a-1+2a-3=5a-4\)
\(N=\left|4-a\right|-a+5\)
Mà \(4-a< 0\)
\(\Rightarrow N=a-4-a+5=1\)
\(I=\left|3-2a\right|-5\)
Mà \(a-\dfrac{3}{2}< 0\)
\(\Rightarrow I=3-2a-5=-2a-2\)
K, Ta có : \(a-3< 0\)
\(\Rightarrow K=\dfrac{2\left(a^2-9\right)}{4\left|a-2\right|}=\dfrac{\left(a-3\right)\left(a+3\right)}{\left|2a-4\right|}\)
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
1) \(ĐK:3-2a>0\Leftrightarrow a< \dfrac{3}{2}\)
2) \(ĐK:2x-5< 0\Leftrightarrow x< \dfrac{5}{2}\)
3) \(ĐK:3-5a< 0\Leftrightarrow a>\dfrac{3}{5}\)
4) \(ĐK:a< 0\)
5) \(ĐK:-a\ge0\Leftrightarrow a\le0\)
\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)
\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)
\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)
\(A=\dfrac{2\sqrt{a}\left(a+1\right)-3\left(a+1\right)}{2\sqrt{a}-3}=a+1\)
\(B=\dfrac{2a\left(a-1\right)}{\sqrt{a}\left(a-1\right)}=2\sqrt{a}\)
\(A-B=a+1-2\sqrt{a}=\left(\sqrt{a}-1\right)^2>=0\)
=>A>=B
\(\sqrt{\dfrac{-2a}{3}}.\sqrt{\dfrac{-3a}{8}}=\sqrt{\dfrac{-2a}{3}.\dfrac{-3a}{8}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{\left|a\right|}{2}=-\dfrac{a}{2}\left(do.a\le0\right)\)