K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

Bài này áp dụng BĐT B.C.S là ra nhé

Ta có \(VT=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{b+c+a}=a+b+c=VP\) 

Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)

(*) BĐT B.C.S phát biểu như sau:

 Cho \(2n\) số thực \(a_1,a_2,...,a_n,x_1,x_2,...,x_n\), trong đó \(a_i>0,\forall i\in\left\{1,2,...,n\right\}\). Khi đó ta có:

 \(\dfrac{x_1^2}{a_1}+\dfrac{x_2^2}{a_2}+...+\dfrac{x_n^2}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\) (*)

Dấu "=" xảy ra \(\Leftrightarrow\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}\)

Trước tiên, ta chứng minh (*) đúng với \(n=2\). Thật vậy:

Với \(x,y\inℝ;a,b>0\), thì ta cần chứng minh 

\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)

 \(\Leftrightarrow\dfrac{bx^2+ay^2}{ab}\ge\dfrac{\left(x+y\right)^2}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(bx^2+ay^2\right)\ge ab\left(x+y\right)^2\)

\(\Leftrightarrow abx^2+a^2y^2+b^2x^2+aby^2\ge abx^2+aby^2+2abxy\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

 Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)

 Để chứng minh với \(n\ge3\) thì bạn chỉ cần dùng nhiều lần BĐT cho 2 phân thức là được.

 VD: \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y\right)^2}{a+b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

Vậy BĐT được chứng minh.

 

4 tháng 11 2018

a) Theo bđt cauchy ta có:

\(a^3+b^3+b^3\ge3\sqrt[3]{a^3.b^6}=3ab^2\)

\(a^3+a^3+b^3\ge3a^2b\)

công vế theo vế ta có \(3\left(a^3+b^3\right)\ge3ab^2+3a^2b\)

\(\Leftrightarrow a^3+b^3+3\left(a^3+b^3\right)\ge a^3+3a^2b+3ab^2+b^3\)

\(\Leftrightarrow4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

suy ra đpcm

4 tháng 11 2018

ta luôn có \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\dfrac{2\left(a^2+b^2\right)}{4}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow\dfrac{\left(a^2+b^2\right)}{2}\ge\dfrac{\left(a+b\right)^2}{2^2}=\left(\dfrac{a+b}{2}\right)^2\)

suy ra đpcm

23 tháng 3 2023

Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?

12 tháng 2 2018

ta có : \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)

khi đó ta có : \(\dfrac{b-a}{a}=\dfrac{b^2-a^2}{a^2+c^2}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}\)

\(\Leftrightarrow\dfrac{b-a}{a}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}\Leftrightarrow\dfrac{b-a}{a}=\dfrac{b-a}{a}\) (luôn đúng)

\(\Rightarrow\) (đpcm)

13 tháng 11 2017

ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)

suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)

\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)

(1);(2) suy ra acbc+adbd=acad+bcbd

nên bc+ad=bc+ad

suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)

Theo đề bài ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )

Theo tính chất dãy tỉ số bằng nhau ta có :

\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)  ( 2 )

Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )

Từ ( 2 ) , ( 3 ) 

 = > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )

 

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có: \(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\left(1\right)\)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{bk-b}{dk-d}=\dfrac{b\left(k-1\right)}{d\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

 

 

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

27 tháng 12 2018

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\Leftrightarrow\dfrac{1}{c}.2=\dfrac{1}{a}+\dfrac{1}{b}\)

\(\Leftrightarrow\dfrac{2}{c}=\dfrac{a+b}{ab}\Leftrightarrow2ab=\left(a+b\right)c\)

\(\Leftrightarrow ab+ab=ac+bc\)

\(\Leftrightarrow ab-bc=ac-ab\Leftrightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Bài này mình cũng đã trả lời rồi đấy ạ =))

6 tháng 2 2023

a) Đề là chứng minh \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\) à bạn?

Ta có: \(\dfrac{a}{c}=\dfrac{c}{b}\)

\(\Rightarrow ab=c^2\)

\(\Rightarrow\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a^2+ab}{b^2+ab}=\dfrac{a\left(a+b\right)}{b\left(a+b\right)}=\dfrac{a}{b}\)

\(\Rightarrowđpcm\)

b) 

Ta có: \(\dfrac{a}{c}=\dfrac{c}{d}\)

\(\Rightarrow c^2=ab\)

\(\Rightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b^2-a^2}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)

\(\Rightarrowđpcm.\)