Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)=>\(a+b\ge\frac{4ab}{a+b}\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=>\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
=>\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)
=\(\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
dau bang xay ra <=>a=b=c=\(\frac{1}{3}\)
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Ta chứng minh được
\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Rightarrow P\le\sum\frac{ab}{ab\left(a^2+b^2\right)+ab}=\sum\frac{1}{a^2+b^2+1}\)
Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)
Ta lại chứng minh được:
\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)
\(\Rightarrow P\le\sum\frac{1}{x^3+y^3+1}\le\sum\frac{xyz}{xy\left(x+y\right)+xyz}=\sum\frac{z}{x+y+z}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đây là bài thi vào 10 của Thanh Hóa thì phải
(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh
\(VT=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{1}{4}\left(\frac{ab}{a}+\frac{ab}{b}+\frac{bc}{b}+\frac{bc}{c}+\frac{ca}{c}+\frac{ca}{a}\right)\)
\(VT\le\frac{1}{4}\left(2a+2b+2c\right)=\frac{1}{2}\) (1)
Mặt khác \(\frac{bc}{a}+\frac{ac}{b}\ge2c\) ; \(\frac{bc}{a}+\frac{ab}{c}\ge2b\) ; \(\frac{ac}{b}+\frac{ab}{c}\ge2a\)
\(\Rightarrow2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge1\)
\(\Rightarrow VP=\frac{1}{4}\left(1+\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge\frac{1}{4}\left(1+1\right)=\frac{1}{2}\) (2)
Từ (1) và (2) suy ra đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)