Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp: Sử dụng tích phân để tính.
Cách giải: Vì hình có tính chất đối xứng nên ta tính phần diện tích ở góc
Phương trình đường elip ở nửa trên là
Diện tích Elip:
Chọn hệ trục tọa độ và gọi các điểm như hình.
Phương trình Elip là:
Suy ra đường Elip nằm trên trục Ox là:
Giao điểm của đường thẳng d: x = 2 3 đi qua tiêu điểm F 2 và nửa Elip nằm bên trên trục Ox là
Parabol đi qua các điểm có phương trình
Khi đó diện tích
Khi đó diện tích
Vậy số tiền cần chi phí:
Chọn D.
Chọn A
Đặt hai parabol vào trong hệ trục tọa độ Oxy với trục hoành trùng với một cạnh dài và gốc tọa độ O là trung điểm của cạnh dài đó. Từ giả thiết, hai parabol có phương trình lần lượt là
Phương trình hoành độ giao điểm của hai parabol là
Diện tích trồng hoa được xác định theo công thức
Số tiền cần dùng bằng 2.715.000 đồng
Chọn đáp án B
Phương pháp
+ Từ giả thiết ta viết được phương trình đường tròn và phương trình parabol
+ S 1 là phần diện tích giới hạn bởi parabol; đường tròn và hai đường thẳng x=2;x=-2. Từ đó sử dụng công thức diện tích hình phẳng bằng ứng dụng tích phân để tính S 1 .
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y=f(x);y=g(x) và hai đường thẳng x=a;x=b là
Phương trình đường Elip là: x 2 4 + y 2 1 = 1 . Diện tích hình Elip là S ( B ) = πa . b = 2 π ( m 2 )
Tọa độ giao điểm M, N là nghiệm hệ:
Vậy
Parabol (P) đối xứng qua Oy có dạng y = a x 2 + c a # 0
Vì
Diện tích phần tô đậm là:
* Tính . Đặt .
Đổi cận
Suy ra
* Tính
= 3 6 + 2 3
Vậy
= π 3 + 3 6 + 4 3 m2
Tổng số tiền sử dụng là:
≈ 2 . 341 . 000 đồng
Chọn đáp án A.
Chọn hệ trục tọa độ Oxy như hình vẽ.
Parabol đối xứng qua Oy nên có dạng
Vì (P) đi qua B(4;0) và N(2;6) nên
Diện tích hình phẳng giới hạn bởi (P) và trục Ox là
Diện tích phần trồng hoa là
Do đó số tiền cần dùng để mua hoa là
Chọn D.
Chọn gốc toạ độ O=AB∩CD, các tia Ox, Oy lần lượt trùng với các tia OB, OC.
Elip có độ dài trục lớn AB=8m, độ dài trục nhỏ CD=6m có phương trình là
Diện tích của cả hình elip là
Theo giả thiết có F(1;0) và
Parabol có trục đối xứng là Ox qua các điểm F, P, Q có dạng ( P ) : x = a y 2 + b y + c
Thay toạ độ các điểm F,P,Q vào phương trình parabol có
Nửa elip bên phải trục tung là x = 4 1 - y 2 9 . Diện tích hình phẳng giới hạn bởi nửa elip này và parabol (P) là
Diện tích phần tô đậm bằng
Số tiền cần dùng
≈ 4.809.142 đồng
Chọn đáp án D.