Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 2021-x = a
2023-x=b
2x-4044=c
ta có a + b + c=2021-x+2023-x+2x-4044=0
suy ra a + b = -c
suy ra (a+b)^3 =-c^3
ta có a^3 + b^3 + c^3=(a+b)^3 -3ab(a+b) + c^3 = -c^3 +3abc +c^3 = 3abc
ta có (2021-x)^3 + (2023-x)^3 + (2x-4044)^3 = 0
=> 3(2021-x)(2023-x)(2x-4044)=0
=> th 1 x = 2021, th 2 x = 2023; th3 x = 2022
\(a,\Leftrightarrow6x-9+4-2x=-3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-3-6x\right)\left(2x-3+6x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-3-4x=0\\8x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{8}\end{matrix}\right.\)
a/
\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)
\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)
\(\Leftrightarrow6-6x=0\)
=> x=1
Để phương trình đã cho là phương trình bậc nhất một ẩn thì m - 2 ≠ 0
⇔ m ≠ 2
e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow x^2-4x+4-\left(x^2+6x+9\right)-4x-4=5\)
\(\Leftrightarrow x^2-4x+4-x^2-6x-9-4x-4=5\)
\(\Leftrightarrow-14x=14\)
\(\Leftrightarrow x=-1\)
b) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-x^2+2x-1-3x^2+15x=-44\)
\(\Leftrightarrow17x=-34\Rightarrow x=-2\)
\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\Rightarrow x=-2\\ b,\Rightarrow\left(x-2021\right)\left(2022x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{2022}\end{matrix}\right.\\ c,\Rightarrow\left(x^2-9\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3-2x-7\right)=0\\ \Rightarrow\left(x-3\right)\left(-4-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left(x-2021\right)\left(x-5\right)-\left(x-2021\right)=0\\ \Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\)