K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

MK KO BT GIẢI NHƯNG ĐOÁN BỪA THÌ KẾT QUẢ SẼ LÀ 1hihi

CHỜ MK TÌM HỈU CÁCH GIẢI ĐÃ NHÉ

19 tháng 2 2021

cảm mơn bạn nhó mông bạn sớm tìm dc cách giải tối nay là mik phải nộp rùi

 

19 tháng 7 2018

ồ cuk khó nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 

a) \(\left(x-1\right)\left(y+2\right)=5\)

Th1 : \(\hept{\begin{cases}x-1=-5\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x-1=-1\\y+2=-5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-7\end{cases}}}\)

TH3 : \(\hept{\begin{cases}x-1=5\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)

TH4 : \(\hept{\begin{cases}x-1=1\\y+2=5\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

13 tháng 8 2016

tớ ko hiểu mà còn ý b nữa bn

17 tháng 9 2021

\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)

\(\Rightarrow\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)=0\)

\(\Rightarrow\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)

\(\Rightarrow\left(x+2020\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)

\(\Rightarrow x+2020=0\Rightarrow x=2020\)

1 tháng 8 2021

Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)

\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)

Vậy x = -15 ; y = -25

2 tháng 8 2021

Trả lời:

\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-25\end{cases}}\)

Vậy x = - 15; y = - 25 

x^2+1>=1

=>(x^2+1)^2>=1

y^2+2>=2

=>(y^2+2)^4>=16

=>(x^2+1)^2+(y^2+2)^4>=17

=>(x^2+1)^2+(y^2+2)^4-2>=15

Dấu = xảy ra khi x=y=0

22 tháng 9 2019

\(\left(x+1\right)^2=\left(x+1\right)^4\)

\(\Rightarrow\left(x+1\right)^4-\left(x+1\right)^2=0\)

\(\Rightarrow\left(x+1\right)^2\left[\left(x+1\right)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x+1\right)^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\x+1=\pm1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\text{ or }x=-2\end{cases}}\)