Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = (3x - 2)^2 - 3(x - 4)(4 + x) + (x - 3)^3 - (x^2 - x + 1)(x + 1)
D = 9x^2 - 12x + 4 - 3x^2 + 48 + x^3 - 9x^2 + 27x - 27 - x^3 - 1
D = -3x^2 + 15x + 24
1) \(\left(a+b\right)^2-\left(a^3+b^3\right)\)
\(=\left(a+b\right)^3-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-a^2+ab-b^2\right)\)
\(=3ab\left(a+b\right)\)
2) \(\left(x+1\right)^2-4\left(x+1\right)y^2+4y^4\)
\(=\left(x+1+2y^2\right)^2\)
\(x^5+x^4+x^3+x^2+x+1=0\)
\(\Rightarrow x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^4+x^2+1\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
\(a,=2x\left(x+3\right)\\ b,=x^3\left(x+3\right)+\left(x+3\right)=\left(x^3+1\right)\left(x+3\right)\\ =\left(x+1\right)\left(x+3\right)\left(x^2-x+1\right)\\ c,=64-\left(x-y\right)^2=\left(8-x+y\right)\left(8+x-y\right)\\ A=x^2+6x+5+x^3-8-x^2-x+2\\ A=x^3+5x-1\)
a) 2x2+6x=2x(x+3)
b) x4+3x3+x+3=(x4+x)+(3x3+3)=x(x3+1)+3(x3+1)=(x+3)(x3+1)
c) 64-x2-y2+2xy=-(x2-2xy+y2)+82=8-(x+y)2=(8+x+y)(8-x-y)
A= (x+5)(x+1)+(x-2)(x2+2xx+4)-(x2+x-2)
A= x2+6x+5+x3-8-x2-x+2
A= x3+(x2-x2)+(6x-x)+(5-8+2)
A= x3+5x-1
bt sau khi nhân ra sẽ bằng x^3 - 4x^2 + 4x + x^2 - 4x + 4 + 4x ^2 - x^3 = 13 <=> x ^ 2 + 4 = 13 <=> x ^2 = 9 <=> x thuộc {-3; 3}
vậy x thuộc {-3; 3}
\(\Leftrightarrow x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì x^2 + 2 > 0 \(\forall x\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy ...
\(x^4+x^3+2x-4=0\Leftrightarrow\left(x^4-1\right)+\left(x^3-1\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\left(x-1\right)\left(x^2+x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1+x^2+x+1+2\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\text{ mà }x^2+2>0\text{ nên:}x-1=0\text{ hoặc:}x+2=0\)
x=1 hoặc x=-2
Ta có : (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
=> (x2 - 1)[(x2 - 1)2 - (x4 + x2 + 1)] = 0
<=> (x2 - 1)(x4 - 2x2 + 1 - x4 - x2 - 1) = 0
<=> (x2 - 1)(-3x2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\-3x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1;1\\x=0\end{cases}}\)
Lời giải:
$\frac{x-4}{x-2}=\frac{-3}{4}$
$\Rightarrow 4(x-4)=-3(x-2)$
$\Leftrightarrow 7x=22$
$\Leftrightarrow x=\frac{22}{7}$