K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

vẫn thời trẻ trâu nên ko bik câu nài giải như thế nào!Trân trọng!

14 tháng 4 2020

chắc không ai giải ra đâu hề

very difficult

study well

Extremely hard

5 tháng 7 2020

3484949498 =

8 tháng 5 2022

05/04/2021ai thương mẹ thì gửi dòng chữ này cho 20 người , ai mà ko gửi mà xóa thì mẹ bạn sẽ chết trong vào 3 ngày , xin lỗi mĩnh cũng bị ép gửi , xin lỗi nhé vì tớ cũng thương mẹ Xin chào. Tôi là QuỳnhVõ Như Quỳnh , tôi đến Việt Nam khoảng 4 năm rồi, tôi làm chủ 1 đại lý vế số, tôi bị chết oan ,tôi có thể gửi tin nhắn cho bạn.Hãy tin tôi đi ! Bạn hãy gửi tin nhắn này cho 50 người để được may mắn Bạn ko tin tôi ư?1 cậu bé tên Ngọc đọc xong tin nhắn rùi cười nhạo, tối hôm cậu bé ấy bị xe tông chết.1 cô gái tên Mai đọc xong rồi gửi qua loa cho 20 người , cô ấy đã thi rớt đại học .1 cặp vợ chồng nhận được tin nhắn này liền gửi cho 50 người, 3 ngày sau hai vợ chồng trúng được 1 căn nhà trị giá 2000000000.Nếu bạn không gửi hoặc gửi qua loa thì sẽ bị giống mấy người trên .Lời nguyền sẽ bắt đầu khi bn đọc tin nhắn này . Nhanh tay lên .haha,chúc may mắn

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến Xét pt (1): \(\Delta=b^2-4ac\) \(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\) Xét pt (2) : \(\Delta=b^2-4ac\) \(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\) Thay vào M:...
Đọc tiếp

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến

Xét pt (1): \(\Delta=b^2-4ac\)

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

Xét pt (2) : \(\Delta=b^2-4ac\)

\(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\)

Thay vào M:

\(M=\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4c^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4c^2}\)

\(=\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4c^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4c^2}\)

\(=\dfrac{2b^2+2\Delta}{4a^2}+\dfrac{2b^2+2\Delta}{4c^2}=\dfrac{b^2+\Delta}{2a^2}+\dfrac{b^2+\Delta}{2c^2}=\dfrac{b^2c^2+\Delta c^2}{2a^2c^2}+\dfrac{a^2b^2+\Delta a^2}{2a^2c^2}\)

\(=\dfrac{b^2\left(a^2+c^2\right)+\Delta\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+\Delta\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}\)

\(=\dfrac{\left(2b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2-2ac\right)\left(a^2+c^2\right)}{a^2c^2}=\dfrac{a^2b^2-2a^3c+b^2c^2-2ac^3}{a^2c^2}\)

\(=\dfrac{a^2b^2}{a^2c^2}+\dfrac{b^2c^2}{a^2c^2}-\dfrac{2a^3c}{a^2c^2}-\dfrac{2ac^3}{a^2c^2}=\dfrac{b^2}{c^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{c}-\dfrac{2c}{a}\)

\(=\left(\dfrac{b^2}{c^2}-\dfrac{2ac}{c^2}\right)+\left(\dfrac{b^2}{a^2}-\dfrac{2ac}{a^2}\right)=\dfrac{b^2-2ac}{c^2}+\dfrac{b^2-2ac}{a^2}\)

\(=\left(b^2-2ac\right)\left(\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\)

Bài tập Toán

Thanks a lots for your answering ^^!

Hiếu Cao Huy: Wait together!

2
12 tháng 7 2017

M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)

Áp dụng định lý viettel :( :v )

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)

\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)

Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)

12 tháng 7 2017

@_@ oho đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi

NV
6 tháng 3 2021

\(VT\ge\dfrac{1}{\left(a^2+1\right)-1}+\dfrac{1}{\left(b^2+1\right)-1}+\dfrac{1}{\left(c^2+1\right)-1}+4-\dfrac{4}{ab+1}+4-\dfrac{4}{bc+1}+4-\dfrac{4}{ca+1}\)

\(VT\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{4}{ab+1}-\dfrac{4}{bc+1}-\dfrac{4}{ca+1}+12\)

Mặt khác \(a;b;c\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab+1\ge a+b\) (và tương tự...)

\(\Rightarrow VT\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+12\)

\(VT\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}-\dfrac{4}{a+b}-\dfrac{4}{b+c}-\dfrac{4}{c+a}+1+1+1+9\)

\(VT\ge\left(\dfrac{2}{a+b}-1\right)^2+\left(\dfrac{2}{b+c}-1\right)^2+\left(\dfrac{2}{c+a}-1\right)^2+9\ge9\)

5 tháng 1 2021

undefined

NV
8 tháng 2 2022

Với mọi \(0< a< \dfrac{1}{2}\) ta có:

\(\left(\sqrt{2a}-1\right)^2\ge0\Rightarrow2a+1\ge2\sqrt{2a}\)

\(\Rightarrow1\ge2\sqrt{a}\left(\sqrt{2}-\sqrt{a}\right)\)

\(\Rightarrow\dfrac{1}{\sqrt{2}-\sqrt{a}}\ge2\sqrt{a}\)

Do đó:

\(\dfrac{2+\sqrt{2a}}{2-a}=\dfrac{2-a+a+\sqrt{2a}}{2-a}=1+\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{2}\right)}{\left(\sqrt{2}-\sqrt{a}\right)\left(\sqrt{2}+\sqrt{a}\right)}=1+\dfrac{\sqrt{a}}{\sqrt{2}-\sqrt{a}}\ge1+\sqrt{a}.2\sqrt{a}=2a+1\)

Tương tự:

\(\dfrac{2+\sqrt{2b}}{2-b}\ge2b+1\)

Cộng vế:

\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge2a+1+2b+1=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

NV
9 tháng 1 2023

Pt này vô nghiệm, em kiểm tra lại đề bài

9 tháng 1 2023

Anh ơi! Đề đúng ạ anh! Anh cho em xin cách giải ạ 

23 tháng 10 2023

a: \(\left(sinx+cosx\right)^2=m^2\)

=>\(m^2=sin^2x+cos^2x+2\cdot sinx\cdot cosx\)

=>\(2\cdot sinx\cdot cosx=m^2-1\)

\(\left(sinx-cosx\right)^2=sin^2x+cos^2x-2\cdot sinx\cdot cosx\)

\(=1-\left(m^2-1\right)=2-m^2\)

\(\left|sin^4x-cos^4x\right|=\left|\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\right|\)

\(=\left|sin^2x-cos^2x\right|\)

\(=\left|\left(sinx+cosx\right)\left(sinx-cosx\right)\right|\)

\(=\left|m\left(2-m^2\right)\right|=\left|2m-m^3\right|\)

b: \(m=sinx+cosx\)

\(=\sqrt{2}\cdot\left(sinx\cdot\dfrac{\sqrt{2}}{2}+cosx\cdot\dfrac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\cdot sin\left(x+\dfrac{\Omega}{4}\right)\)

=>\(\left|m\right|=\sqrt{2}\cdot\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|\)

\(0< =\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|< =1\)

=>\(0< =\sqrt{2}\cdot\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|< =\sqrt{2}\)

=>\(\left|m\right|< =\sqrt{2}\)

NV
28 tháng 4 2020

Mẫn Li

Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)

Câu 2b sửa lại thì cm dễ thôi:

\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)

\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)

\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)

\(=cot^2a.cot^2b-1\)

(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))

28 tháng 4 2020

Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:

\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)

Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!