Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
(2x-1)6>hoặc = 0
(2x-1)8>hoặc = 0
mà (2x-1)6 = (2x-1)8nên :
2x-1=0
2x=0+1
2x=1
=> x=1\2
Bài 1:
b) Ta có: \(D=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
\(=\dfrac{-5}{10}\cdot\dfrac{-4}{10}\cdot\dfrac{-3}{10}\cdot...\cdot0\cdot...\cdot\dfrac{3}{10}\cdot\dfrac{4}{10}\cdot\dfrac{5}{10}\)
=0
a) \(\left|x-3\right|+\left|2x-6\right|=8\)
\(x-3+2x-6=8\)
\(3x-9=8\)
\(3x=17\)
\(\Rightarrow x=\frac{17}{3}\)
b) Tương tự câu a .
c) \(\left|2x-3\right|=6-\left|3-2x\right|\)
\(2x-3=6-3-2x\)
\(2x-3=x\)
\(-2x=3\)
\(x=\frac{-3}{2}\)
d) \(\left|3x-2\right|-\left|6-9x\right|=-\left|-16\right|\)
\(3x-2-6-9x=-16\)
\(3x-8-9x=-16\)
\(-6x-8=-16\)
\(-6x=-8\)
\(\Rightarrow x=\frac{8}{6}\)
\(\)
f(x)=9x3-1/3x+3x2-3x+1/3x2-1/9x3-3x2-9x+27+3x
= 9x3-1/9x3+3x2+1/3x2-3x2-1/3-3x-9x+3x+27
= 80/9x3+1/3x2-28/3x+27
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
a, 1,5 +|2x - 2/3| = 3/2
|2x - 2/3| = 3/2 - 1,5
|2x - 2/3| = 0
<=> 2x - 2/3 = 0
<=> 2x = 0 + 2/3
<=> 2x = 2/3
<=> x = 2/3 : 2
<=> x = 1/3
Vậy x = 1/3
b, 3/4 - |1/4 - x| = 5/8
|1/4 - x| = 3/4 - 5/8
|1/4 - x| = 1/8
<=> 1/4 - x = 1/8
1/4 - x = /1/8
<=> x = 1/4 - 1/8
x = 1/4 - ( -1/8)
<=> x = 1/8
x = 3/8
Vậy x thuộc { 1/8 ; 3/8 }
`A(x) =2x-1`
`2x-1=0`
`=> 2x=0+1`
`=>2x=1`
`=>x=1/2`
__
`B(x) =3 - 6/5x`
`3-6/5x=0`
`=> 6/5x=3-0`
`=> 6/5x=3`
`=> x= 3 : 6/5`
`=> x= 3 xx 5/6`
`=> x=15/6`
__
`C(x) = 4x^2 - 25`
`4x^2 - 25=0`
`=> 4x^2 = 0+25`
`=> 4x^2 =25`
`=> 4x^2 = (+-5)^2`
`=> x= 5/4` hoặc `x=-5/4`
__
`D(x) = ( x + 1/4 )^2 - 16/9`
` ( x + 1/4 )^2 - 16/9=0`
`=> ( x + 1/4 )^2 = 16/9`
`=>( x + 1/4 )^2 =(+-4/3)^2`
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{4}=\dfrac{4}{3}\\x+\dfrac{1}{4}=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
__
`E(x) = 8x^2 + 27`
`8x^2 +27=0`
`=>8x^2=0-27`
`=> 8x^2 =-27`
`->` đề hơi sai;-;.
__
`F(x) = x^2 + 3x`
`x^2 +3x=0`
`=>x(x+3)=0`
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
`@ yl`
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
/x+1/=6+3+2x=9+2x
=> \(\left[{}\begin{matrix}x+1=9+2x\\x+1=-\left(9+2x\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+8=0\\3x=-10\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-8\\x=-\dfrac{10}{3}\end{matrix}\right.\)
/x-1/=6+3+2x=9+2x
=> \(\left[{}\begin{matrix}x-1=9+2x\\x-1=-\left(9+2x\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+10=0\\3x=-8\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-10\\x=-\dfrac{8}{3}\end{matrix}\right.\)