K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

a) Dễ thấy Ix+1I +Ix+2I+ Ix+3I >= 0 nên 4x >=0 \(\Rightarrow\)x>= 0

 Suy ra 4x=x+1+x+2+x+3= 3x+6 , x=6

Các phần khác tương tự

22 tháng 7 2018

a, |x+1| + | x+2 |  +  | x+3 | = 5x-1

 =>   x+1 + x+2 + x +3 = 5x - 1

 =>  4x + 10 = 5x- 1

 => 5x-4x = -1-10

 \(\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)

 b,  

 |x+1,1| + | x+1,2 |  +  | x+1,3 |  + | x+ 1 , 4  | = 5x

 =>   x+1,1 + x + 1 , 2 + x + 1,3 + x + 1,4  = 5x 

 =>  4x + 5 = 5x- 1

 => 5x-4x = -1-5

 => \(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

c, d sáng mai mình giải 

21 tháng 9 2020

Ta có: \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|\ge0\left(\forall x\right)\)

=> \(5x\ge0\left(\forall x\right)\)

<=> \(x\ge0\left(\forall x\right)\)

Thay vào ta được:

\(x+1,1+x+1,2+x+1,3+x+1,4=5x\)

\(\Leftrightarrow4x+5=5x\)

\(\Rightarrow x=5\)

21 tháng 9 2020

Ta có:  |x+1,1|\(\ge\)0

            |x+1,2|\(\ge\)0

            |x+1,3|\(\ge\)0

            |x+1,4|\(\ge\)0

Suy ra:  |x+1,1|+|x+1,2|+|x+1,3|+|x+1,4|\(\ge\)0

   <=>    5x\(\ge\)0

     =>      x\(\ge\)0

Do đó: |x+1,1|+|x+1,2|+|x+1,3|+|x+1,4|=5x

  <=>           x+1,1+x+1,2+x+1,3+x+1,4=5x

                           4x+(1,1+1,2+1,3+1,4)=5x

                                           4x+5           =5x

                                           4x               =5x-5

                                           4x-5x          =-5

                                           (4-5)x          =-5

                                                -1x          =-5

   =>                                           1x         =5

                                                    x          =5:1

   =>                                             x          =5

Vậy x cần tìm là 5

28 tháng 6 2016

\(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)(1)

VT(1) >=0 với mọi x nên để 1 có nghiệm thì 5x phải >= 0 hay x>=0

Với x>=0 thì các giá trị tuyệt đối của VT bằng biểu thức bên trong nên

(1) <=> x + 1,1 + x + 1,2 + x + 1,3 + x + 1,4 = 5x

<=> x = 5. 

1 tháng 2 2019

1, https://hoc24.vn//hoi-dap/question/91350.html

Bài 3:

=>2xy-x-y-2=0

=>x(2y-1)-y+0,5-2,5=0

=>x(2y-1)-(y-0,5)=2,5

=>2x(2y-1)-(2y-1)=5

=>(2y-1)(2x-1)=5

=>\(\left(2x-1;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(0;-2\right);\left(-2;0\right)\right\}\)

Câu 5:

Đặt x/2=y/3=z/4=k

=>x=2k; y=3k; z=4k

x^2+y^2+z^2=116

=>4k^2+9k^2+16k^2=116

=>29k^2=116

=>k^2=4

TH1: k=2

=>x=4; y=6; z=8

TH2: k=-2

=>x=-4; y=-6; z=-8

12 tháng 8 2019

Vế trái tổng các giá trị tuyệt đối nên là số không âm,do đó :

\(5x\ge0\Rightarrow x\ge0\Rightarrow x+1,1>0;x+1,2>0;x+1,3>0;x+1,4>0\)

Ta có : \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)

\(\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)

\(\Leftrightarrow4x+5=5x\Leftrightarrow4x-5x=-5\Leftrightarrow x=5\)

Mà x = 5 thỏa điều kiện \(x\ge0\)

Vậy x = 5 là giá trị cần tìm

12 tháng 8 2019

\(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)

Dễ thấy : VT \(\ge0\)nên \(5x\ge0\Leftrightarrow x\ge0\)

\(\Rightarrow pt\Leftrightarrow4x+5=5x\Leftrightarrow x=5\)

3 tháng 2 2019

Ta có : 2xy - x - y = 2

<=> 2xy - x = 2 + y

<=> x(2y - 1) = y + 2

=> x = \(\frac{y+2}{2y-1}\)

Vì x nguyên nên \(\frac{y+2}{2y-1}\) nguyên

Ta có ; \(\frac{y+2}{2y-1}=\frac{2y+4}{2y-1}=\frac{\left(2y-1\right)+5}{2y-1}=\frac{2y-1}{2y-1}+\frac{5}{2y-1}=1+\frac{5}{2y-1}\)

Để \(\frac{y+2}{2y-1}\) nguyên thì \(\frac{5}{2y-1}\) nguyên

Suy ra : 2y - 1 \(\in\) Ư(5) = {-5;-1;1;5}

Ta có bảng :

2y - 1 -5 -1 1 5
2y -4 0 2 6
y -2 0 1 3
x 0 -2 3 1

3 tháng 2 2019

Cảm ơn bạn nhá haha

Nhưng mà \(\dfrac{y+2}{2y-1}\) làm sao mà bằng \(\dfrac{2y+4}{2y-1}\)

Phải \(2x\) mới bằng \(\dfrac{2y+4}{2y-1}\) được chứ hum