K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2022

Đặt \(x^{1003}=a;y^{1003}=b;1003=c\). Khi đó điều kiện đã cho 

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\a^2+b^2=2c\end{matrix}\right.\)

Ta có \(a^2+b^2=2c\Leftrightarrow\left(a+b\right)^2=2c+2ab\) \(\Leftrightarrow c^2-2c=2ab\) \(\Leftrightarrow ab=\dfrac{c^2-2c}{2}\)

Từ đó \(x^{3009}+y^{3009}=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\) \(=c\left(2c-\dfrac{c^2-2c}{2}\right)\) \(=\dfrac{6c^2-c^3}{2}\) \(=\dfrac{6.1003^2-1003^3}{2}=-501495486,5\)

(mình tính đúng luôn nhé)

 

31 tháng 12 2022

e cảm ơn

18 tháng 6 2015

Ta có \(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006\)nên \(\left(\sqrt{x^2+2006}-x\right)\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)=2006.\left(\sqrt{x^2+2006}-x\right)\)\(2006.\left(y+\sqrt{y^2+2006}\right)=2006.\left(\sqrt{x^2+2006}-x\right)\)suy ra \(y+\sqrt{y^2+2006}=\sqrt{x^2+2006}-x\)(1) Tương tự ta có \(x+\sqrt{x^2+2006}=\sqrt{y^2+2006}-y\) (2) cộng (1) và (2) vế với vế ta được 

x+y = -(x+y) hay suy ra 2(x+y) = 0 \(\Rightarrow\) x+y = 0

28 tháng 11 2017

ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\)    (x;y;z khác 0)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)

\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\)  (vì x;y;z khác 0)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=>  x+y=0 hoặc y+z=0 hoặc z+x=0

mà x+y+z=2006 nên

z=2006 hoặc x=2006 hoặc y=2006 

=> đpcm

10 tháng 9 2018

Ta có: \(P=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\)

10 tháng 9 2018

trả lời rõ ra đc k bạn nếu đc thì thank bạn nhìu nha

20 tháng 10 2017

biểu thức dã cho <=> ( x+\(\sqrt{x^2+2006}\) ) (\(x-\sqrt{x^2+2006}\)) (y+\(\sqrt{y^2+2006}\)) =2006 (x-\(\sqrt{x^2+2006}\))

=> - 2006 ( y + \(\sqrt{y^2+2006}\)) = 2006 ( x-\(\sqrt{x^2+2006}\))

=>y + \(\sqrt{y^2+2006}\) = \(\sqrt{x^2+2006}\) - x

=>y = \(\sqrt{x^2+2006}\) - x - \(\sqrt{y^2+2006}\) (1)

TT ta có biểu thức đã cho<=>

\(\left(x+\sqrt{x^2+2006}\right)\left(y+\sqrt{y^2+2006}\right)\left(y-\sqrt{y^2+2006}\right)=2006\) (y-\(\sqrt{y^2+2006}\))

<=> -2006 (x+\(\sqrt{x^2+2006}\)) = 2006 (\(y-\sqrt{y^2+2006}\))

<=>x+\(\sqrt{x^2+2006}\) =\(\sqrt{y^2+2006}\) - y

<=>x =\(\sqrt{y^2+2006}-\sqrt{x^2+2006}-y\) (2)

từ (1) và (2)=>x+y= - y - x

=>2 (x+y) = 0 => x+y = 0