Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)
Vì \(x=2017\)
\(\Leftrightarrow x+1=2018\)
Thay vào P(x) ta được :
\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)
\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)
\(P\left(x\right)=-x^{2018}+1\)
\(P\left(x\right)=-2017^{2018}+1\)
Lời giải:
Ta có:
\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-1000\)
\(A=(x^5-2017x^4)-(x^4-2017x^3)+(x^3-2017x^2)-(x^2-2017x)+x-1000\)
\(A=x^4(x-2017)-x^3(x-2017)+x^2(x-2017)-x(x-2017)+x-1000\)
Tại \(x=2017\Rightarrow A=2017^4.0-2017^3.0+2017^2.0-2017.0+2017-1000\)
\(A=2017-1000=1017\)
a)\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2019\)
\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2019\)
\(A=x-2019=2017-2019=-2\)
b)ta có:\(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay vào \(\Rightarrow B=2\cdot\left(-1\right)^5+5\cdot\left(-2\right)^3+4\)
\(B=-2+\left(-40\right)+4=-38\)
ĐK \(2018x\ge0\Rightarrow x\ge0\)
Khi đó \(x+\frac{1}{2018}\ge0;x+\frac{2}{2018}\ge0;...;x+\frac{2017}{2018}\ge0\)
Ta có \(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|=2018x\)(Vế trái có 2017 hạng tử)
<=> \(x+\frac{1}{2018}+x+\frac{2}{2018}+...+x+\frac{2017}{2018}=2018x\)
<=> \(\left(x+x+...x\right)+\left(\frac{1}{2018}+\frac{2}{2018}+...+\frac{2017}{2018}\right)=2018x\)
2017 hạng tử x 2017 số hạng
=> \(2017x+\frac{1+2+...+2017}{2018}=2018x\)
=> \(x=\frac{2017.\left(2017+1\right):2}{2018}\)
\(\Rightarrow x=\frac{2017}{2}=1008,5\)(tm)
Vậy x = 1008,5
Vì \(\left|x+\frac{1}{2018}\right|\ge0\forall x\)
\(\left|x+\frac{2}{2018}\right|\ge0\forall x\)
\(\left|x+\frac{3}{2018}\right|\ge0\forall x\)
.......................................
\(\left|x+\frac{2017}{2018}\right|\ge0\forall x\)
\(\Rightarrow\)\(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+\left|x+\frac{3}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|\ge0\forall x\)
mà \(\left|x+\frac{1}{2018}\right|+\left|x+\frac{2}{2018}\right|+\left|x+\frac{3}{2018}\right|+...+\left|x+\frac{2017}{2018}\right|=2018x\)
\(\Rightarrow\)\(2018x\ge0\forall x\)\(\Rightarrow\)\(x\ge0\)
\(\Rightarrow\)\(x+\frac{1}{2018}+x+\frac{2}{2018}+x+\frac{3}{2018}+...+x+\frac{2017}{2018}=2018x\)
\(\Leftrightarrow\)\(2017x+\frac{1}{2018}+\frac{2}{2018}+\frac{3}{2018}+...+\frac{2017}{2018}=2018x\)
\(\Leftrightarrow\)\(\frac{1+2+3+...+2017}{2018}=x\)
\(\Leftrightarrow\)\(x=\frac{\left[\left(2017+1\right).2017\right]:2}{2018}\)
\(\Leftrightarrow\)\(x=\frac{2035153}{2018}\)
\(\Leftrightarrow\)\(x=\frac{2017}{2}=1008,5\)
Vậy \(x=1008,5\)
Bạn ơi bài này tìm x à
yes