Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
\(x^2-2014xy-2016xz+\left(2015^2-1\right)yz\)
\(=x^2-2014xy-2016xz+\left(2015-1\right)\left(2015+1\right)yz\)
\(=x^2-2014xy-2016xz+2014\cdot2016\cdot yz\)
\(=x\left(x-2014y\right)-2016z\left(x-2014y\right)\)
\(=\left(x-2014y\right)\left(x-2016z\right)\)
x2 - 2014xy - 2016xz + (20152 - 1)yz
= x2 - 2014xy - 2016xz + (2015 - 1)(2015 + 1)yz
= x2 - 2014xy - 2016xz + 2014.2016.yz
= (x2 - 2014xy) - (2016xz - 2014.2016.yz)
= x(x - 2014y) - 2016z(x - 2014y)
= (x - 2014y)(x - 2016z)
#TT
1/ \(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)=\left(a^2+2ab+b^2+ab\right)\left(a-b\right)+\left(a+b\right)^3+ab\left(b-a\right)\)= \(\left(a^2+2ab+b^2\right)\left(a-b\right)+\left(a+b\right)ab+\left(a-b\right)^3-ab\left(a-b\right)\)
= \(\left(a+b\right)^2\left(a-b\right)+\left(a+b\right)^3\)
= \(\left(a+b\right)^2\left(a-b+a+b\right)=2a\left(a+b\right)^2\)
k mình nhé!
Có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)
Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\)
\(\Leftrightarrow x=3\)
Vậy \(x=y=z=3\)
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
\(x^2+y^2+z^2=xy+yz+xz\)
\(2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì mũ chẵn luôn lớn hơn hoặc bằng 0
\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow}}x=y=z\)
\(\Rightarrow x^{2015}+y^{2015}+z^{2015}=x^{2015}+x^{2015}+x^{2015}=3x^{2015}\)
\(\Rightarrow3x^{2015}=3^{2016}\)
\(\Rightarrow x^{2015}=3^{2015}\)
\(\Rightarrow x=3\)
Vậy \(x=y=z=3\)