Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2 +24+14x) (x^2+24+10x) =165x^2
Đặt t = x^2 + 24+12x
(t-2x)(t+2x) = 165x^2
t^2 - 4x^2 =165x^2
t^2 = 169x^2
t = 13x hay t = -13x
Nếu t = 13x thì
x^2 +12x + 24= 13x
x^2 - x + 24 = 0 (Vô nghiệm vì vế trái > 0)
Nếu t = -13x thì:
x^2 +12x+24 = -13x
x^2 +25x +24=0
(x+1)(x+24) = 0
x + 1 =0 hay x+24 = 0
x = -1 hay x= -24
Vậy...
Học tốt!
\(x=\frac{1}{2}x+\frac{1}{4}x+\frac{1}{7}x+3\)
\(\Rightarrow x=x\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{7}\right)+3\)
\(\Rightarrow x=\frac{25}{28}x+3\Rightarrow x-\frac{25}{28}x=3\Rightarrow x\left(1-\frac{25}{28}\right)=3\Rightarrow x.\frac{3}{28}=3\Rightarrow x=28\)
Vậy x = 28
Đặt x làm nhân tử chung : x(1/2+1/4+1/7)+3=x
Qui đồng cái tổng đấy chuyển vế là ra
\(1,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 2,x^2+4x+4=0\\ \Rightarrow\left(x+2\right)^2=0\\ \Rightarrow x+2=0\\ \Rightarrow x=-2\\ 3,\left(x+1\right)^2+2\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x+1+2\right)=0\\ \Rightarrow\left(x+1\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
x2+4x+4=0
(x+2)2=0
x+2=0
x=+-2
câu 1 giống câu 2
(x+1)2+2(x+1)=0
(x+1+2)(x+1)=0
Th1: x+3=0 Th2: x+1=0
x=-3 x=-1
vậy ...
a/ (x + 3)4 + (x + 5)4 = 16
=> (x2 + 6x + 9)2 + (x2 + 10x + 25)2 = 16
=> x4 + 36x2 + 81 + 12x3 + 108x + 18x2 + x4 + 100x2 + 625 + 20x3 + 500x + 50x2 = 16
=> 2x4 + 32x3 + 204x2 + 608x + 690 = 0
=> 2(x + 3)(x + 5)(x2 + 8x + 23) = 0
=> (x + 3)(x + 5)(x2 + 8x + 23) = 0
=> x = -3
hoặc x = -5
hoặc x2 + 8x + 23 = 0 , mà x2 + 8x + 23 > 0 => pt vô nghiệm
Vậy x = -3 , x = -5
\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x+1\ge0\\x-2>0\\x+2>0\\x\ge0\end{matrix}\right.\) và \(4-x\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>2\\x>-2\\x\ge0\end{matrix}\right.\) và \(x\ne4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x\ne4\end{matrix}\right.\)
x2–4=0
=> x2=4
=>\(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
=>\(^{x^2-2^2=0}\)
(x+2)(x-2)=0
\(\orbr{\begin{cases}x+2=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
\(ĐK:x^2-4\ge0\Leftrightarrow x\le-2;x\ge2\)
Mặt khác : x ≥ - 2
Suy ra : x ≥ 2
\(\sqrt{x^2-4}+\sqrt{x+2}=\sqrt{\left(x+2\right)\left(x-2\right)}+\sqrt{x+2}=\sqrt{x+2}\left(\sqrt{x-2}+1\right)\)