Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ 0=02
⇒X-11+Y+X+4-Y=0
⇒(X+X)+(-11+4)+(Y-Y)=0
⇒2X+(-7)+0=0
⇒2X=0-(-7)
⇒2X=7
⇒X=7:2
⇒X=3,5
VẬY X =3,5
Theo bài ra ta có :
x/5 = y/4 = z/7 và x+2y+z=10
=>x/5 = 2y/8 = z/7
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/5 = 2y/8 = z/7 = x+2y+z/5+8+7 = 10/20 =1/2
x= 5.1/2 x= 5/2
=> 2y=8.1/2 => y=2
z=7.1/2 z=7/2
Vậy .....
Đặt : \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
`=>x=5k,y=3k`
Ta có : \(x^2-y^2=4=>\left(5k\right)^2-\left(3k\right)^2=4\\ =>25k^2-9k^2=4\\ =>16k^2=4\\ =>k^2=\dfrac{1}{4}\\ =>k=\pm\dfrac{1}{2}\)
\(=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
https://olm.vn/hoi-dap/detail/101683214611.html e kham kahor
Nếu cần link anh đưa cho , nếu ko vào câu hỏi tương tự sẽ có
hc tốt
Lời giải:
Ta thấy: $(x-1)^2\geq 0$ với mọi $x$
$(y+2)^2\geq 0$ với mọi $y$
$\Rightarrow A=(x-1)^2+4(y+2)^2+2021\geq 0+4.0+2021=2021$
Vậy $A_{\min}=2021$. Giá trị đạt được khi $x-1=y+2=0$
$\Rightarrow x=1; y=-2$
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+y^2+z^2}{4+9+16}=\dfrac{116}{29}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.4=16\\y^2=4.9=36\\z^2=16.16=16^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\y=6\\z=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-4\\y=-6\\z=-16\end{matrix}\right.\end{matrix}\right.\)
help!!!!!!!!!!!!!