K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+6x+2m-3=0\)

\(\Delta=6^2-4\cdot1\cdot\left(2m-3\right)\)

\(=36-8m+12=-8m+48\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-8m+48>0

=>-8m>-48

=>m<6

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-6\\x_1x_2=\dfrac{c}{a}=2m-3\end{matrix}\right.\)

\(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2+x_1+x_2\)

=>\(\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=x_1+x_2+2\)

=>\(\dfrac{-6-2}{x_1x_2-\left(x_1+x_2\right)+1}=-6+2=-4\)

=>\(x_1x_2-\left(x_1+x_2\right)+1=\dfrac{-8}{-4}=2\)

=>2m-3-(-6)=2

=>2m-3+6=2

=>2m+3=2

=>2m=-1

=>\(m=-\dfrac{1}{2}\left(nhận\right)\)

4 tháng 2

làm sai anh ạ

25 tháng 6 2021

ĐK:`x_1,x_2 ne 0=>x_1.x_2 ne 0`

`=>-2m-1 ne 0=>m ne -1/2`

Ta có:`a=1,b=2m,c=-2m-1`

`=>a+b+c=1+2m-2m-1=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-2m-1\end{array} \right.\) 

PT có 2 nghiệm pn

`=>-2m-1 ne 1`

`=>-2m ne 2`

`=>m ne -1`

Nếu `x_1=1,x_2=-2m-1`

`pt<=>6=1+1/(-2m-1)`

`<=>5=1/(-2m-1)`

`<=>2m+1=-1/5`

`<=>2m=-6/5`

`<=>m=-3/5(tm)`

Nếu `x_2=1,x_1=-2m-1`

`pt<=>6/(-2m-1)=-2m-1+1=-2m`

`<=>6/(2m+1)=2m`

`<=>3/(2m+1)=m`

`<=>2m^2+m-3=0`

`a+b+c=0`

`=>m_1=1(tm),m_2=-c/a=-3/2(tm)`

Vậy `m in {-3/5,1,-3/2}` thì ....

22 tháng 1

a) Với m = 2, phương trình đã cho trở thành:

2x² - 6x + 2.2 - 5 = 0

⇔ 2x² - 6x - 1 = 0

∆' = (-3)² - 2.(-1) = 11 > 0

⇒ Phương trình có 2 nghiệm phân biệt:

x₁ = [-(-3) + 11]/2 = (3 + 11)/2

x₂ = [-(-3) - 11]/2 = (3 - 11)/2

b) ∆' = (-3)² - 2.(2m - 5)

= 9 - 4m + 10

= 19 - 4m

Để phương trình đã cho có nghiệm thì ∆' ≥ 0

⇔ 19 - 4m ≥ 0

⇔ 4m ≤ 19

⇔ m ≤ 19/4

Theo định lý Viét, ta có:

x₁ + x₂ = 3

x₁x₂ = (2m - 5)/2

Ta có:

1/x₁ + 1/x₂ = 6

⇔ (x₁ + x₂)/(x₁x₂) = 6

⇔ 3/[(2m - 5)/2] = 6

⇔ (2m - 5)/2 = 1/2

⇔ 2m - 5 = 1

⇔ 2m = 6

⇔ m = 3 (nhận)

Vậy m = 3 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

Δ=(m+2)^2-4*2m=(m-2)^2

Để PT có hai nghiệm pb thì m-2<>0

=>m<>2

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1x_2}{4}\)

=>\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1x_2}{4}\)

=>\(\dfrac{m+2}{2m}=\dfrac{2m}{4}=\dfrac{m}{2}\)

=>2m^2=2m+4

=>m^2-m-2=0

=>m=2(loại) hoặc m=-1

8 tháng 7 2021

pt sai 

8 tháng 7 2021

Mình xin lỗi mình vừa sửa lại phương trình rồi ạ bạn giúp mình giải với. Mình cảm ơn!

 

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

28 tháng 5 2021

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

NV
21 tháng 8 2021

\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)

(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))

Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)

\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)

\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)

\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\) 

\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)

Thế vào \(x_1x_2=2m\)

\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)

\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)

\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))

a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)

\(=4m^2+4m+1-4m^2-12m\)

\(=-8m+1\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-8m+1>0\)

\(\Leftrightarrow-8m>-1\)

hay \(m< \dfrac{1}{8}\)

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1