Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-6xy+9y^2+1=\left(x-3y\right)^2+1\ge1>0\\ b,-25x^2+5x-1=-\left(25x^2+2\cdot5\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
a) x2-6x+10
=(x^2-6x+9)+1
=(x-3)^2+1
vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0
Hay x^2-6x+10>0
a)A= x2-4xy+4y2+3 (x;y\(\in R\) )
A=(x2-4xy+4y2)+3
A=(x-2y)2+3
do (x-2y)2\(\ge0\forall x\);y
=>(x-2y)2+3\(\ge3\)
=> A \(\ge3\)
vậy A >0 với mọi x;y\(\in R\)
a)
a)
x2 - 4xy + 4y2 + 3
= x2 - 2.x.2y + (2y)2 + 3
= (x - 2y)2 + 3
Vì (x - 2y)2 \(\ge\) 0 với mọi x, y
\(\Rightarrow\) (x - 2y)2 + 3 > 0 với mọi x, y
x2-6xy+y2+1>0
(x-y)2+1>0
mà (x-y)^2>0
\(-25x^2+5x-1=-\left(25x^2-5x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)