K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: \(=\dfrac{\left(x^4-y^4\right)^2}{x^2+y^2}=\left(x^2-y^2\right)^2\cdot\left(x^2+y^2\right)\)

b: \(=\dfrac{\left(4x+3\right)\left(16x^2-12x+9\right)}{16x^2-12x+9}=4x+3\)

1 tháng 11 2021

Bn cs lm đc câu c, d lun k

6 tháng 7 2023

5) \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2-2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)

\(=\left[\left(x-y\right)-\left(x+y\right)\right]^2\)

\(=\left(x-y-x-y\right)^2\)

\(=\left(-2y^2\right)\)

\(=4y^2\)

6) \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)

\(=\left(x-5\right)^2-2\left(x-5\right)\left(x+5\right)+\left(x+5\right)^2\)

\(=\left[\left(x-5\right)-\left(x+5\right)\right]^2\)

\(=\left(x-5-x-5\right)^2\)

\(=\left(-10\right)^2=100\)

7) \(\left(x-2\right)^2+\left(x+1\right)^2+2\left(x-2\right)\left(-1-x\right)\)

\(=\left(x-2\right)^2-2\left(x-2\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left[\left(x-2\right)-\left(x+1\right)\right]^2\)

\(=\left(-3\right)^2=9\)

8) \(-\left(2x+3y\right)^2+\left(2x-3y\right)^2-2\left(4x^2-9y^2\right)\)

\(=\left(2x-3y\right)^2+2\left(2x+3y\right)\left(2x-3y\right)+\left(2x+3y\right)^2\)

\(=\left[\left(2x+3y\right)+\left(2x-3y\right)\right]^2\)

\(=\left(4x\right)^2=16x^2\)

26 tháng 7 2020

a) ( x2 - 5 )( x + 3 ) = x3 + 3x2 - 5x - 15

b) ( x + 4 )( x - x2 ) = x2 - x3 + 4x - 4x2 = -x3 - 3x2 + 4x 

c) ( x2 - 6 )( x + 2 ) + ( x + 3 )( x - x2 ) = x3 + 2x2 - 6x - 12 + x2 - x3 + 3x - 3x2 = -3x - 12 = -3( x + 4 )

d) x( x - y ) - y( x - y ) = ( x - y )( x - y ) = ( x - y )2

e) x2( x + y ) - x( x2 - y ) = x3 + x2y - x3 + xy = x2y + xy = xy( x + 1 ) 

f) 3x( 12x - 4 ) - 9x( 4x - 3 ) = 36x2 - 12x - 36x2 + 27x = 15x 

26 tháng 7 2020

Bài làm

a) ( x2 - 5 )( x + 3 ) 

= x3 + 3x2 - 5x - 15

b) ( x + 4 )( x - x2 )

= ( x + 4 ) . x( 1 - x )

= x( x + 4 )( 1 - x )

= x( x - x2 + 4 - 4x )

= x( 4 - x2 - 3x )

= 4x - x3 - 3x2 

c) ( x2 - 6 )( x + 2 ) + ( x + 3 )( x - x2 )

= ( x - 3 )( x + 3 )( x + 2 ) + ( x + 3 )( x - x2 )

= ( x + 3 )[ ( x - 3 )( x + 2 ) + ( x - x2 )]

= ( x + 3 ) [ x2 + 2x - 3x - 6 + x2 - x2 ]

= ( x + 3 ) ( x2 - x - 6 )

= x3 - x2 - 6x + 3x2 - 3x - 18

= x3 + 2x2 - 9x - 18

d) x( x - y ) - y( x - y )

= ( x - y )( x - y )

= ( x - y )2 

= x2 - 2xy + y

e) x2( x + y ) - x( x2 - y )

= x3 + x2y - x3 + xy

= x2y + xy

f) 3x( 12x - 4 ) - 9x( 4x - 3 )

= 3x . 3( 4x - 1 ) - 9x( 4x - 3 )

= 9x( 4x - 1 ) - 9x( 4x - 3 )

= 9x( 4x - 1 - 4x + 3 )

= 9x . 2

= 18x

6 tháng 8 2017

1. x2 - 2xy + y2 - ( y + 1 )2 = ( x - y )2 - ( y + 1)2

= \(\left[\left(x-y\right)-\left(y+1\right)\right]\left[\left(x-y\right)+\left(y+1\right)\right]\)

= (x-2y-1) ( x +1 )

5. x6 - y6 = (x3)2 - (y3)2

= ( x3 - y3 ) ( x3 + y3 )

=\(\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

3 tháng 7 2017

1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)

=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)

=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)

=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)

Ta thấy: \((5x-2)^2\ge0\)

=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)

2. \(f\left(x\right)=4x^2-28x+50\)

=> \(f\left(x\right)=(4x^2-28x+49)+1\)

=> \(f\left(x\right)=(2x-7)^2+1\)

Ta thấy: \((2x-7)^2\ge0\)

=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)

3. \(f\left(x\right)=-16x^2+72x-82\)

=> \(f\left(x\right)=-(16x^2-72x+82)\)

=> \(f\left(x\right)=-(16x^2-72x+81+1)\)

=> \(f\left(x\right)=-[(4x-9)^2+1]\)

Ta thấy: \((4x-9)^2\ge0\)

=> \((4x-9)^2+1\ge1>0\)

=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)

5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)

=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)

=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)

Ta thấy: \((2x-3)^2\ge0\)

\((3y+1)^2\ge0\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)

3 tháng 12 2017

a,Ta có: \(x^3-4x^2-12x+27=x^3+3x^2-7x^2-21x+9x+27=x^2(x+3)-7x(x+3)+9(x+3)=(x+3)(x^2-7x+9)\)b,

\(25(x-y)^2-16(x+y)^2=(5x-5y+4x+4y)(5x-5y-4x-4y)=(9x-y)(x-9y)\)c,\(x^4+x^3+x+1=x^3(x+1)+(x+1)=(x^3+1)(x+1)=(x+1)^2(x^2-x+1)\)d, \(x(x+1)^2+x(x-5)-5(x+1)^2=(x+1)^2(x-5)+x(x-5)=(x-5)(x^2+3x+1)\)e,\(x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)\)f,\(x^3-19x-30=x^3-5x^2+5x^2-25x+6x-30=(x-5)(x^2+5x+6)=(x-5)(x^2+2x+3x+6)=(x-5)(x+2)(x+3)\)

3 tháng 12 2017

nãy bài 1 mk gửi thiếu 1 ý

\(x^2y+xy^2-x+y\)

có ai giúp mk ý này k

bài 2 thì k cần lm cũng đc nhé vì mk biết làm rùi còn mỗi ý này thui hu hu