Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2 + 10x + 24 = y
pt đã cho trở thành ( y + 4x ).y - 165x2 = 0
<=> y2 + 4xy - 165x2 = 0
<=> y2 - 11xy + 15xy - 165x2 = 0
<=> y( y - 11x ) + 15x( y - 11x ) = 0
<=> ( y - 11x )( y + 15x ) = 0
=> ( x2 + 10x + 24 - 11x )( x2 + 10x + 24 + 15x ) = 0
<=> ( x2 - x + 24 )( x2 + 25x + 24 ) = 0
<=> ( x2 - x + 24 )( x2 + 24x + x + 24 ) = 0
<=> ( x2 - x + 24 )[ x( x + 24 ) + ( x + 24 ) ] = 0
<=> ( x2 - x + 24 )( x + 24 )( x + 1 ) = 0
Vì x2 - x + 24 > 0 ∀ x
nên pt <=> ( x + 24 )( x + 1 ) = 0 <=> x = -24 hoặc x = -1
Vậy ...
Đặt t = \(x^2+14x+24\)
\(\Rightarrow\)\(t\left(t-4x\right)-165x^{^2}=0\)
\(\Leftrightarrow t^2-4xt-165x^2=0\)
\(\Leftrightarrow t^2+11xt-15xt-165x^2=0\)
\(\Leftrightarrow t\left(t+11x\right)-15x\left(t+11x\right)=0\)
\(\Leftrightarrow\left(t+11x\right)\left(t-15x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+11x=0\\t-15x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-11x\\t=15x\end{cases}}}\)
với t= -11x
\(\Rightarrow x^2+14x+24=-11x\)
\(\Leftrightarrow x^2+25x+24=0\)
\(\Leftrightarrow x^2+x+24x+24=0\)
\(\Leftrightarrow x\left(x+1\right)+24\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+24=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-24\end{cases}}}\)
với t=15x
\(\Rightarrow x^2+14x+24=15x\)
\(\Leftrightarrow x^2-x+24=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{95}{4}=0\)(Vô Lí)
vậy....
1.2x^2+x-6=2x^2+4x-3x+6=(2x^2+4x)-(3x+6)=2x(x+2)-3(x+2)=(x+2)(2x-3)
2.x^3-9x^2+14x
=x*(x^2-9x+14)
=x*(x^2-7x-2x+14)
=x*((x^2-7x)-(2x-14))
=x*(x(x-7)-2(x-7))
=x*((x--7)(x-2))
=x*(x-7)(x-2)
\(\dfrac{1}{x+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)
\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=\dfrac{4}{105}\)
\(\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)
\(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\dfrac{x+8-x}{x\left(x+8\right)}=\dfrac{8}{105}\)
\(\dfrac{8}{x.\left(x+8\right)}=\dfrac{8}{105}\)
\(\Rightarrow x\left(x+8\right)=105\)
\(x^2+8x-105=0\)
\(\left(x-7\right)\left(x+15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)
\(ĐKXĐ:x\ne0;-2;-4;-6;-8\)\(\frac{1}{x\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+8\right)}=\frac{4}{105}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{2}{\left(x+6\right)\left(x+8\right)}=\frac{8}{105}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+...+\frac{1}{x+6}-\frac{1}{x+8}=\frac{8}{105}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+8}=\frac{8}{105}\)
Quy đồng làm nốt
phân tích mẫu thành nhân tử
VD:x2+6x+8=x2+2x+4x+8=(x+2)(x+4)
x2+10x+24=x2+4x+6x+24=(x+6)(x+4).....
kết quả ra1/x-1/x+8=4/105
chuyển vế rồi tính
a) x2 + 10x - 2x - 20 = 0
=> x(x + 10) - 2(x + 10) = 0
=> (x - 2)(x + 10) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)
b) \(x^2-5x-24=0\)
\(\Rightarrow x^2-5x+\frac{25}{4}-\frac{121}{4}=0\)
\(\Rightarrow\left(x-\frac{5}{2}\right)^2=\frac{121}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2=\left(-\frac{11}{2}\right)^2\\\left(x-\frac{5}{2}\right)^2=\left(\frac{11}{2}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{2}=\left(-\frac{11}{2}\right)\\x-\frac{5}{2}=\frac{11}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{6}{2}=3\\x=\frac{16}{2}=8\end{cases}}\)
c) x2 - 8x + 3x - 24 = 0
=> x(x - 8) + 3(x - 8) = 0
=> (x + 3)(x - 8) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)