Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Giải}\)
\(\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}\)
\(\Leftrightarrow\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}+\frac{x+95}{90}=0\)
\(\Leftrightarrow\left(x+95\right)\left(\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}\right)=0\)
Dễ thấy thừa số thứ 2 khác 0
nên: x+95=0=>x=-95
Vậy: x=-95
cộng 2 vế với 2 tức là cộng mỗi phân số với 1.Sau đó được mâu sô chung là 95 rồi khử mẫu và làm như bình thường ,.BẠN NHÉ !
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\frac{x+1}{94}+1+\frac{x+2}{93}+1+\frac{x+3}{92}+1=\frac{x+4}{91}+1+\frac{x+5}{90}+1+\frac{x+6}{89}+1\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Leftrightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
\(\Leftrightarrow x+95=0\).Do \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Leftrightarrow x=-95\)
(x+1)/94 + ( x+2)/93 + ( x+3)/92.......
= ................ + ( x+6)/89
<=> (x+1)/94 + 1 + ( x+2)/93 +1 .........
=.............. cộng 1 nhá
<=> (x+95)/94 + ( x+96) / 93 + ( x+95)/92
= ( x+95)/91 + ( x+95)/90 + ( x+95)/89
<=> ( x+95) ( 1/94 +1/93 +1/92 )
= ( x+95) ( 1/91 +1/90 +1/89)
<=> ( x+95) ( 1/94 +1/93 +1/92 - 1/91 - 1/90 - 1/89 )
<=> x+95 =0
<=>x = -95
Vậy :x = -95
Bài 1:
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Rightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Mà \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Rightarrow x=-95\)
Vậy x = -95
Bài 2: tương tự
\(\frac{x+1}{94}\)+\(\frac{x+2}{93}\)+\(\frac{x +3}{92}\)= \(\frac{x+4}{91}\)+ \(\frac{x+5}{90}\)+ \(\frac{x+6}{89}\)
<=> [(\(\frac{x+1}{94}\)+\(\frac{x+2}{93}\)+\(\frac{x+3}{92}\)+3)]= [(\(\frac{x+4}{91}\)+\(\frac{x+5}{90}\)+\(\frac{x+6}{89}\)+3)]
<=> [(\(\frac{x+1}{94}\)+1)+(\(\frac{x+2}{93}\)+1)+(\(\frac{x+3}{92}\)+1)]- [(\(\frac{x+4}{91}\)+1)+(\(\frac{x+5}{90}\)+1)+(\(\frac{x+6}{89}\)+1)] =0
<=> [(\(\frac{x+1}{94}\)+ \(\frac{94}{94}\))+(\(\frac{x+2}{93}\)+\(\frac{93}{93}\))+(\(\frac{x+3}{92}\)+\(\frac{92}{92}\))] -[(\(\frac{x+4}{91}\)+\(\frac{91}{91}\))+(\(\frac{x+5}{90}\)+\(\frac{90}{90}\))+(\(\frac{x+6}{89}\)+\(\frac{89}{89}\))] =0
<=> (\(\frac{x+95}{94}\)+\(\frac{x+95}{93}\)+\(\frac{x+95}{92}\)) -(\(\frac{x+95}{91}\)+\(\frac{x+95}{90}\)+\(\frac{x+95}{89}\)) =0
<=> (x+95)( \(\frac{1}{94}\)+\(\frac{1}{93}\)+\(\frac{1}{92}\)-\(\frac{1}{91}\)-\(\frac{1}{90}\)-\(\frac{1}{89}\)) =0
Vì (\(\frac{1}{94}\)+\(\frac{1}{93}\)+\(\frac{1}{92}\)-\(\frac{1}{91}\)-\(\frac{1}{90}\)-\(\frac{1}{89}\)) \(\ne\) 0
=> x+95=0
<=> x= -95
Vậy S={-95}
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Leftrightarrow\) \(\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Vì \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Leftrightarrow x=-95\)
Vậy phương trình có một nghiệm x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Leftrightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Leftrightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-60}{55}-\frac{x-60}{54}=0\)
\(\Leftrightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Vì \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Leftrightarrow x=60\)
Vậy phương trình có một nghiệm x = 60
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Rightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Mà \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Rightarrow x=-95\)
Vậy x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Rightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Rightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-5}{55}-\frac{x-6}{54}=0\)
\(\Rightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Mà \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Rightarrow x=60\)
Vậy x = 60
\(\dfrac{x+1}{94}+\dfrac{x+2}{93}+\dfrac{x+3}{92}=\dfrac{x+4}{91}+\dfrac{x+5}{90}+\dfrac{x+6}{89}\)
\(\Rightarrow\dfrac{x+1}{94}+1+\dfrac{x+2}{93}+1+\dfrac{x+3}{92}+1=\dfrac{x+4}{91}+1+\dfrac{x+5}{90}+1+\dfrac{x+6}{89}+1\)
\(\Rightarrow\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}=\dfrac{x+95}{91}+\dfrac{x+95}{90}+\dfrac{x+95}{89}\)
\(\Rightarrow\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}-\dfrac{x+95}{91}-\dfrac{x+95}{90}-\dfrac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\right)=0\)
Vì \(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\ne0\) nên \(x+95=0\Leftrightarrow x=-95\)
Mk làm luôn nhé , không chép lại đề đâu !!! Ahihi
\(\dfrac{x+1}{94}+1+\dfrac{x+2}{93}+1+\dfrac{x+3}{92}+1=\dfrac{x+4}{91}+1+\dfrac{x+5}{90}+1+\dfrac{x+6}{89}+1\)⇔\(\dfrac{x+95}{94}+\dfrac{x+95}{93}+\dfrac{x+95}{92}-\dfrac{x+95}{91}-\dfrac{x+95}{90}-\dfrac{x+95}{89}=0\)
⇔ \(\left(x+95\right)\)\(\left(\dfrac{1}{94}+\dfrac{1}{93}+\dfrac{1}{92}-\dfrac{1}{91}-\dfrac{1}{90}-\dfrac{1}{89}\right)\) = 0
⇔\(x+95=0\)
⇔ \(x=-95\)
Vậy , ......
7) \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)
\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+36}{65}+1+\frac{x+40}{60}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (vì 1/75 + 1/70 - 1/65 - 1/60 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy.....
7) \(\frac{x+25}{75}+\frac{x+30}{70}=\frac{x+35}{65}+\frac{x+40}{60}\)
\(\Leftrightarrow\)\(\frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+35}{65}+1+\frac{x+40}{60}+1\)
\(\Leftrightarrow\)\(\frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (1/75 + 1/70 - 1/65 - 1/60 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy...
`#040911`
`a)`
`(2x - 1)^2 - (2x + 5)(2x + 1) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - (4x^2 + 12x + 5) = 10`
`\Leftrightarrow 4x^2 - 4x + 1 - 4x^2 - 12x - 5 = 10`
`\Leftrightarrow (4x^2 - 4x^2) - (4x + 12x) + (1 - 5) = 10`
`\Leftrightarrow -16x - 4 = 10`
`\Leftrightarrow -16x = 10 + 4`
`\Leftrightarrow -16x = 14`
`\Leftrightarrow x = \dfrac{-7}{8}`
Vậy, `x= \dfrac{-7}{8}`
`b)`
`9^2(x - 1) + 25(1 - x) = 0`
`\Leftrightarrow 9^2(x - 1) - 25(x - 1) = 0`
`\Leftrightarrow (x - 1)(9^2 - 25) = 0`
`\Leftrightarrow`\(\left[{}\begin{matrix}x-1=0\\9^2-5^2=0\end{matrix}\right.\)
`\Leftrightarrow`\(\left[{}\begin{matrix}x=1\\\left(9-5\right)\left(9+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\4\cdot14=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\56=0\left(\text{vô lý}\right)\end{matrix}\right.\\ \text{Vậy, x = 1}\)
`c)`
\(x^2+3x-4=0\)
`\Leftrightarrow x^2 + 4x - x - 4 = 0`
`\Leftrightarrow (x^2 - x) + (4x - 4) = 0`
`\Leftrightarrow x(x - 1) + 4(x - 1) = 0`
`\Leftrightarrow (x + 4)(x - 1) = 0`
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\\ \text{ Vậy, }x\in\left(-4;1\right)\)