K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

BĐT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi x = y = =z =1

NV
25 tháng 3 2023

Bài này cực kì chặt nên có lẽ phải sử dụng tới BĐT Schur

Đặt \(x+y+z=p\) ; \(xy+yz+zx=q\)

BĐT cần chứng minh tương đương: \(p^3+4q+6\ge2p^2+3pq\) với \(p;q\ge3\)

TH1: \(p\ge q\)

\(p^3+4q+6-2p^2-3pq\ge0\)

\(\Leftrightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge0\)

Do \(\left\{{}\begin{matrix}p\ge q\\p>2\end{matrix}\right.\) \(\Rightarrow\left(p^2-3q\right)\left(p-2\right)\ge\left(p^2-3p\right)\left(p-2\right)\)

\(\Rightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge\left(p^2-3p\right)\left(p-2\right)-2\left(p-3\right)\)

\(=\left(p-3\right)\left(p^2-2p-2\right)=\left(p-3\right)\left[p\left(p-3\right)+p-2\right]\ge0\)

 TH2: \(p\le q\)

Áp dụng BĐT Schur bậc 4:

\(p^4+4q^2+6p\ge5p^2q\Rightarrow p^3+6\ge5pq-\dfrac{4q^2}{P}\)

Do đó ta chỉ cần chứng minh:

\(5pq-\dfrac{4q^2}{p}+4q\ge2p^2+3pq\)

\(\Leftrightarrow p^2q-2q^2+2pq-p^3\ge0\)

\(\Leftrightarrow\left(q-p\right)\left(p^2-2q\right)\ge0\) (đúng)

NV
8 tháng 1 2022

Đề bài sai, biểu thức này ko có min

8 tháng 1 2022

vậy nó có max không thầy, nếu có thầy có thể giúp em tìm max ạ

NV
3 tháng 4 2021

\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)

NV
7 tháng 4 2022

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\)

\(\Rightarrow x^2+yz\le xy+xz\)

\(\Rightarrow zx^2+yz^2\le xyz+xz^2\)

\(\Rightarrow P\le x^3+y^3+z^3+8\left(xy^2+xz^2+xyz\right)\)

\(\Rightarrow P\le x^3+y^3+z^3+3yz\left(y+z\right)+8\left(xy^2+xz^2+2xyz\right)\)

\(\Rightarrow P\le x^3+\left(y+z\right)^3+8x\left(y+z\right)^2\)

\(\Rightarrow P\le x^3+\left(4-x\right)^3+8x\left(4-x\right)^2\)

\(\Rightarrow P\le8x^3-52x^2+80x+64\)

Tới đây, đơn giản nhất là khảo sát hàm \(f\left(x\right)=8x^3-52x^2+80x+64\) trên \(\left[0;4\right]\)

(Nếu ko khảo sát hàm, ta có thể tách như sau, tất nhiên là dựa trên điểm rơi có được từ việc khảo sát hàm):

\(\Rightarrow P\le\left(8x^3-52x^2+80x-36\right)+100\)

\(\Rightarrow P\le4\left(x-1\right)^2\left(2x-9\right)+100\)

Do \(0\le x\le4\Rightarrow2x-9< 0\Rightarrow P\le100\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;3;0\right)\) và 1 vài bộ hoán vị của chúng

10 tháng 4 2021

HD: áp dụng BĐT Cô-si cho 3 số hạng trên, khi đó trong căn sẽ triệt tiêu các tổng  suy ra đpcm

16 tháng 10 2020

Vì \(x\ge1\Rightarrow x^2\ge x\)

Từ đó: \(P\ge\frac{x}{\left(x+y\right)^2+x}+\frac{x}{z^2+x}=x\left[\frac{1}{\left(x+y\right)^2+x}+\frac{1}{z^2+x}\right]\)

\(\ge x\cdot\frac{4}{\left(x+y\right)^2+x+z^2+x}=\frac{4x}{\left(x+y\right)^2+z^2+2x}\) (Cauchy Schwarz)

Lại có: \(\left(x+y\right)^2+z^2=x^2+y^2+z^2+2xy=3\left(x+y+z\right)\)

\(\le3\sqrt{2\left[\left(x+y\right)^2+z^2\right]}\)

\(\Rightarrow\left(x+y\right)^2+z^2\le18\)

\(\Rightarrow P\ge\frac{4x}{18+2x}=2-\frac{18}{x+9}\ge2-\frac{18}{1+9}=\frac{1}{5}\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Vậy Min(P) = 1/5 khi x = 1 ; y = 2 ; z = 3

Chọn D

NV
15 tháng 1 2021

Thế \(\left(x;y\right)=\left(0;-1\right)\) vào ta được \(f\left(0\right)=0\)

Thế \(y=0\Rightarrow f\left(f\left(x\right)\right)=x\)

Do vế phải của biểu thức trên là hàm bậc nhất \(\Rightarrow\) có tập giá trị là \(Z\Rightarrow f\) là toàn ánh

Giả sử tồn tại \(x_1;x_2\) sao cho \(f\left(x_1\right)=f\left(x_2\right)=a\Rightarrow\left\{{}\begin{matrix}f\left(f\left(x_1\right)\right)=x_1\Rightarrow f\left(a\right)=x_1\\f\left(f\left(x_2\right)\right)=x_2\Rightarrow f\left(a\right)=x_2\end{matrix}\right.\)

\(\Rightarrow x_1=x_2\Rightarrow f\) là đơn ánh \(\Rightarrow f\) là song ánh

Thế \(\left(x;y\right)=\left(1;-1\right)\Rightarrow f\left(0\right)=1+f\left(-1\right)\Rightarrow f\left(-1\right)=-1\)

Thế \(\left(x;y\right)=\left(-1;f\left(1\right)\right)\Rightarrow f\left(f\left(-1\right)+f^2\left(1\right)\right)=-1+f\left(f\left(1\right)\right)\)

\(\Rightarrow f\left(f^2\left(1\right)-1\right)=-1+1=0\Rightarrow f^2\left(1\right)-1=0\) (do \(f\) song ánh)

\(\Rightarrow f^2\left(1\right)=1\Rightarrow f\left(1\right)=1\) (cũng vẫn do \(f\) song ánh nên \(f\left(1\right)\ne-1\) do \(f\left(-1\right)=-1\))

Thế \(\left(x;y\right)=\left(1;x\right)\Rightarrow f\left(1+x\right)=1+f\left(x\right)\) (1)

Từ đẳng thức trên, do \(x\in Z\) nên ta có thể quy nạp để tìm hàm \(f\):

- Với \(x=0\Rightarrow f\left(1\right)=1\)

- Với \(x=1\Rightarrow f\left(2\right)=f\left(1+1\right)=1+f\left(1\right)=2\)

- Giả sử \(f\left(k\right)=k\), ta cần chứng minh \(f\left(1+k\right)=1+k\), nhưng điều này hiển nhiên đúng theo (1)

Vậy \(f\left(x\right)=x\) là hàm cần tìm