K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2020

f(-1)=1-a+b; f(0)=b; f(1)=1+a+b

theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)

cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)

từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0

vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)

22 tháng 7 2020

+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)

+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)

\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)

+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)

+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)

+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)

Vậy a=0, b=1/2

P/s: Bài này mình không chắc chắn lắm nhé!

NV
11 tháng 2 2021

\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)

\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)

\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)

\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)

 

28 tháng 8 2017

\(ax^3+acx^2+ax+bx^2+bcx+b\) =>\(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=2;b=2\end{cases}}=>\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)

1 tháng 8 2020

( ax + b )( x2 + cx + 1 ) = x3 - 3x + 2

<=> ax( x2 + cx + 1 ) + b( x2 + cx + 1 ) = x3 - 3x + 2

<=> ax3 + acx2 + ax + bx2 + bcx + b = x3 - 3x + 2

<=> ax3 + ( ac + b )x2 + ( a + bc )x + b = x3 - 3x + 2

<=> \(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=-3\end{cases}}\)và b = 2

<=> \(\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)

NV
13 tháng 1 2021

\(\left\{{}\begin{matrix}9a+3b+c>2\\a+b+c< -1\\a-b+c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-a-b-c>1\\a-b+c>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b+c>2\\-2a-2b-2c>1\\a-b+c>0\end{matrix}\right.\)

Cộng vế với vế:

\(8a>3\Rightarrow a>\dfrac{3}{8}>0\)

Vậy \(a>0\)

27 tháng 7 2018

Xin mọi ngườ hãy giúp tui ai trả lời nhanh nất tui sẽ h cho làm ơn tui đang cần gấp

1 tháng 8 2020

pp U.C.T @ nỗi ám ảnh là đây 

\(RHS=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)

Sử dụng pp U.C.T ta có hệ sau : \(\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a-and--2d=b\end{cases}< =>\hept{\begin{cases}c=0\\d=1\\a=1andb=-2\end{cases}}}\)

câu b để tí nx mình làm nốt

4 tháng 4 2017

Ta có  T = ( a x   +   4 ) ( x 2   +   b x   –   1 )

=   a x . x 2   +   a x . b x   +   a x . ( - 1 )   +   4 . x 2   +   4 . b x   +   4 . ( - 1 )     =   a x 3   +   a b x 2   –   a x   +   4 x 2   +   4 b x   –   4     =   a x 3   +   ( a b x 2   +   4 x 2 )   +   ( 4 b x   –   a x )   –   4     =   a x 3   +   ( a b   +   4 ) x 2   +   ( 4 b   –   a ) x   –   4

 

Theo bài ra ta có

( a x   +   4 ) ( x 2   +   b x   –   1 )   =   9 x 3   +   58 x 2   +   15 x   +   c đúng với mọi x

ó a x 3   +   ( a b   +   4 ) x 2   +   ( 4 b   –   a ) x   –   4   =   9 x 3   +   58 x 2   +   15 x   +   c đúng với mọi x.

ó a = 9 a b + 4 = 58 4 b - a = 15 - 4 = c  ó a = 9 9 . b = 54 4 b - a = 15 c = - 4  ó   a = 9 b = 6 c = - 4

Vậy a = 9, b = 6, c = -4

Đáp án cần chọn là: B

a) ĐKXĐ: \(x\notin\left\{-3;2\right\}\)

b) Ta có: \(P=\dfrac{x^3+2x^2-5x-6}{x^2+x-6}\)

\(=\dfrac{x^3+3x^2-x^2-3x-2x-6}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{x^2\left(x+3\right)-x\left(x+3\right)-2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{\left(x+3\right)\left(x^2-x-2\right)}{\left(x+3\right)\left(x-2\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+1\right)}{x-2}=x+1\)

Với mọi x nguyên thỏa ĐKXĐ, ta luôn có: x+1 là số nguyên

hay P là số nguyên(đpcm)