K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

\(3ax^3+3x^2+x+1⋮3x+1\)

\(\Leftrightarrow x=\frac{-1}{3}\) là nghiệm của phương trình

\(\Leftrightarrow3a\left(-\frac{1}{3}\right)^3+3\left(-\frac{1}{3}\right)^2+\left(-\frac{1}{3}\right)+1=0\)

\(\Leftrightarrow-\frac{a}{9}+\frac{1}{3}-\frac{1}{3}+1=0\)

\(\Leftrightarrow1-\frac{a}{9}=0\)

\(\Leftrightarrow a=9\)

27 tháng 8 2021

Đặt \(Q\left(x\right)=2x^2+x+a\)

Để mà \(Q\left(x\right)⋮x+3\Leftrightarrow Q\left(x\right):x+3\left(dư0\right)\)

Theo định lý \(Bezout:Q\left(-3\right)=0\)( Định lý Bê du=) )

\(\Leftrightarrow2\left(-3\right)^2+\left(-3\right)+a=0\Leftrightarrow15+a=0\Leftrightarrow a=15\)

a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)

hay a=7

31 tháng 12 2022

1: \(\dfrac{f\left(x\right)}{x-3}=\dfrac{2x^2-6x+\left(a+6\right)x-3a-18+3a+19}{x-3}\)

=2x^2+(a+6)+3a+19/x-3

Để f(x)/x-3 dư 4 thì 3a+19=4

=>3a=-15

=>a=-5

2: \(\dfrac{f\left(x\right)}{x-5}=\dfrac{3x^2-15x+\left(a+15\right)x-5a-75+5a+102}{x-5}\)

\(=3x+a+15+\dfrac{5a+102}{x-5}\)

Để dư là 27 thì 5a+102=27

=>5a=-75

=>a=-15

29 tháng 10 2021

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10

18 tháng 7 2019

\(a) x^4 + ax^2 + b \\ = x^4 + 2x^2 + b + ax^2 - 2x^2\\ = (x^2 + 1)^2 - x^2 + x^2(a + b)\\ = (x^2 + x + 1)(x^2 - x + 1) + x^2(a + b) \\ = (x^2 + x + 1)(x^2 - x + 1) + (a + b)(x^2 + x + 1) - (a + b)(x - 1). \)
Để \(x^4 + ax^2 + b\) chia hết cho \(x^2 + x + 1\) thì số dư bằng 0

\(\Rightarrow\left(a-1\right)\left(b-1\right)=0\\ \Rightarrow a=b=1\)
\(b) ax^3 + bx^2 + 5x - 50\\ = (x^2 + 3x - 10)(cx + d) \\ = ax^3 + bx^2 + 5x - 50\\ = cx^3 + (d + 3c)x^2 + (3d - 10c)x - 10d \\\)
Mà: \(a = c\)

\(b = d + 3c\\ 5 = 3d - 10c\\ -50 = -10d\)
Vậy \(a = 1, b = 8\)

\(d)f(x)=ax^3+bx-24\)

Để f(x) chia hết cho (x + 1)(x + 3) thì f(-1)=0 và f(-3) = 0
f(-1)=0 => -a - b - 24 = 0 (*)

f(-3) = 0 => - 27a - 3b - 24 =0 (**)
Từ (*) và (**) ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a-b-24=0\\-27a-3b-24=0\end{matrix}\right.\)

Giải ra ta được a = 2; b = -26

25 tháng 8 2021

Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1

Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )

=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )

<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d

<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d

Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)

Vậy a = b = 1

25 tháng 8 2021

x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1). 
để x^4+ax^2+1 chia hết cho x^2+x+1 
thì số dư =0 
<=> (a-1)(x-1) =0 
<=> a=1