Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 6 cách chọn bi xanh.
Với mỗi cách chọn bi xanh có 6 cách chọn bi vàng để khác số.
Với mỗi cách chọn đó ta lại có 6 cách chọn bi đỏ để khác số với 2 quả vừa chọn.
Xác suất cần tìm là: \(\dfrac{6^3}{C_{21}^3}=\dfrac{108}{665}\).
Để lấy ra có đủ 3 màu thì cần lấy ít nhất 8 viên bi (vì tổng số 2 loại bi ít nhất là đỏ + vàng =7)
Giả sử khi lấy ta lấy ra 9 viên bi đỏ, 9 viên bi vàng, 9 viên bi xanh nên tổng số viên bi là 9 + 9 + 9 = 28 (viên bi). Vậy cần lấy ít nhất 28 viên bi.
Cần lấy ít nhất 28 viên bi để chắc chắn có 10 viên bi cùng màu.
đúng 100 % luôn nha
Câu 1: Không gian mẫu là số cách lấy được \(2\)viên bi trong \(11\)viên. \(n\left(\Omega\right)=C^2_{11}\)
\(A\)là biến cố lấy được hai viên bi đỏ. \(n\left(A\right)=C^2_5\)
Xác suất cần tìm là: \(\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{2}{11}\).
Câu 2: Tương tự câu 1.
Xác suất là \(\frac{C^1_{15}.C^2_{85}}{C^3_{100}}=\frac{51}{154}\)
Không gian mẫu: \(C_{14}^2\)
a. Số cách rút ra 2 bi đỏ: \(C_6^2\)
Xác suất: \(\dfrac{C_6^2}{C_{14}^2}=\dfrac{15}{91}\)
b. Số cách rút 2 viên không có viên xanh nào (nghĩa là 2 viên thuộc 10 viên đỏ hoặc trắng): \(C_{10}^2\) cách
\(\Rightarrow C_{14}^2-C_{10}^2\) cách rút ra ít nhất 1 viên trắng
Xác suất: \(\dfrac{C_{14}^2-C_{10}^2}{C_{14}^2}=\dfrac{46}{91}\)
c. Có 2 trường hợp: bi thứ nhất màu trắng và bi thứ nhất không phải màu trắng.
Xác suất: \(\dfrac{C_4^2}{C_{14}^2}+\dfrac{C_{10}^1}{C_{14}^1}.\dfrac{C_4^1}{C_{13}^1}=\dfrac{2}{7}\)