Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hệ phương trình:
\(\hept{\begin{cases}3mx-y=3m^2-2m+1\\x+my=2m^2\end{cases}}\)
Tìm hệ thức liên hệ giữa x,y không phụ thuộc vào m
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
Phương trình luôn có hai nghiệm \(x_1;x_2\). Theo định lý Viet ta có:
\(x_1+x_2=2\left(m-1\right)\)
\(x_1x_2=m^2-2m\)
Như vậy muốn được hệ thức giữa \(x_1;x_2\) không phụ thuộc vào m, ta phải tìm cách triệt tiêu m. Cụ thể ta có:
\(\frac{x_1+x_2}{2}=m-1\Rightarrow\frac{\left(x_1+x_2\right)^2}{4}=m^2-2m+1\)
Từ đó suy ra \(\frac{\left(x_1+x_2\right)^2}{4}-x_1x_2=m^2-2m+1-m^2+2m=1\)
hay ta có hệ thức: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)
Chúc em học luôn học tập tốt :)
1) Bạn tự giải
2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)
Mặt khác: \(x_1^2+x_2^2=2018\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)
\(\Rightarrow4m^2-4m+1-2m+4=2018\)
\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)
c) Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\)
(Không phụ thuộc vào m)
Đề có vẻ lỗi đoạn x. Bạn xem lại.