Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 1 là 1 nghiệm của f(x) nên a*12+b*1+c=0 hay a+b+c=0
ta có g(1)=c*12+b*1+a=a+b+c=0
vậy 1 là 1 nghiệm của g(x)
a) \(f\left(1\right)=a.1^2+b.1+c\)
\(=a+b+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(\Rightarrow f\left(1\right)+f\left(-2\right)=a+b+c+5a-2b+c\)
\(=5a-b+2c=0\)
\(\Rightarrow f\left(1\right)=-f\left(-2\right)\)
\(\Rightarrow f\left(1\right).f\left(-2\right)\le0\)
b) Thay a=1 ; b=2 ; c=3 vào đa thức f(x) ta được
\(f\left(x\right)=x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\forall x\)
Vậy đa thức f(x) vô nghiệm
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$