K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài yêu cầu gì?

4 tháng 2 2016

nhiều quá bạn ơi , bạn k biết câu nào mình giải zúp cho 

4 tháng 2 2016

hết luôn đó bạn Ngọc Vi ... nhưng bạn giúp được câu nào thì mình cảm ơn

11 tháng 4 2020

1. Ta có : 3x+12=0 <=> x= -4

bảng xét dấu:

x -∞ -4 + ∞
3x+12

- 0 +

f(x) >0 ∀ x ∈ (-4;+∞)

f(x) <0 ∀ x∈ (-∞;-4)

2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)

Bảng xét dấu:

x -∞ 9/5 +∞
-5x+9 + 0 -

f(x) >0 ∀ x ∈ (-∞; 9/5)

f(x) <0 ∀ x ∈(9/5; +∞)

3. Ta có : -3x-9=0 <=> x= -3

x -∞ -3 +∞
-3x-9 + 0 -

f(x) >0 ∀ x∈ (-∞; -3)

f(x) <0 ∀x∈ ( -3; +∞ )

4. Ta có : x (2x+4)=0

+, x=0

+, 2x+4=0 <=> x= -2

x -∞ -2 0 +∞
x - \(|\) - 0 +
2x+4 - 0 + \(|\) +
f (x) + 0 - 0 +

f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)

f(x) <0 ∀ x ∈ (-2;0)

5. Ta có: (x-2)(-x+4)=0

+, x-2=0 <=> x=2

+, -x+4=0 <=> x= 4

x -∞ 2 4 +∞
x-2 - 0 + \(|\) +
-x+4 + \(|\) + 0 -
f(x) - 0 + 0 -

f(x) >0 ∀ x ∈ (2;4)

f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)

6. Ta có : (-4x+3)(x-6)=0

+, -4x+3=0 <=>x= \(\frac{3}{4}\)

+, x-6 =0 <=> x=6

x -∞ 3/4 6 +∞
-4x+3 + 0 - \(|\) -
x-6 - \(|\) - 0 +
f(x) - 0 + 0 -

f(x) >0 ∀ x∈ (3/4;6)

f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 3 > 0,b =  - 4,c = 1\)

\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)

b) Ta có \(a = 9 > 0,b = 6,c = 1\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x =  - \frac{1}{3}\). Khi đó:

\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)

c) Ta có \(a = 2 > 0,b =  - 3,c = 10\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.10 =  - 71 < 0\)

\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)

d) Ta có \(a =  - 5 < 0,b = 2,c = 3\)

\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)

e) Ta có \(a =  - 4 < 0,b = 8c =  - 4\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

g) Ta có \(a =  - 3 < 0,b = 3,c =  - 1\)

\(\Delta  = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) =  - 3 < 0\)

\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)