K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn D

Chọn A

24 tháng 4 2017

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

28 tháng 10 2022

cot a=1/5 nên cosa/sina=1/5

=>sina=5cosa

\(1+cot^2a=\dfrac{1}{sin^2a}=1+\dfrac{1}{25}=\dfrac{26}{25}\)

nên \(sina=\dfrac{5}{\sqrt{26}}\Leftrightarrow cosa=\dfrac{1}{\sqrt{26}}\)

\(cot^4a+sin^2a-cos^2a\)

\(=\dfrac{1}{5^4}+25cos^2a-cos^2a\)

\(=\dfrac{1}{5^4}+24\cdot\dfrac{1}{26}=\dfrac{7513}{8125}\)

\(1+cot^2a=\dfrac{1}{sin^2a}\)

\(\Leftrightarrow\dfrac{1}{sin^2a}=1+\dfrac{\left(a^2-b^2\right)^2}{4a^2b^2}=\dfrac{4a^2b^2+a^4-2a^2b^2+b^4}{4a^2b^2}\)

\(\Leftrightarrow sin^2a=\dfrac{4a^2b^2}{a^4+2a^2b^2+b^4}=\left(\dfrac{2ab}{\left(a^2+b^2\right)}\right)^2\)

=>\(cos^2a=\dfrac{a^4+2a^2b^2+b^4-4a^2b^2}{\left(a^2+b^2\right)^2}\)

\(\Leftrightarrow cos^2a=\dfrac{\left(a^2-b^2\right)^2}{\left(a^2+b^2\right)^2}\)

hay \(cosa=\dfrac{\left(a^2-b^2\right)}{a^2+b^2}\)

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

a) (H.a)

– Dựng góc vuông xOy.

-Trên tia Ox đặt OA=2

– Dựng đường tròn (A;3) cắt tia Oy tại B

Khi đó góc OBA = α

Thật vậy 2016-11-05_160309

b) (H.b)

Tương tự:

b) (H.b)

c) (H.c)

d) (H.d).

Bài 2: 

\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)

\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)

\(\cot a=\dfrac{24}{7}\)

Câu 1: 

\(1+\cot^2a=\dfrac{1}{\sin^2a}\)

nên \(\dfrac{1}{\sin^2a}=1+5^2=26\)

\(\Leftrightarrow\sin^2a=\dfrac{1}{26}\)

\(\Leftrightarrow\sin a=\dfrac{\sqrt{26}}{26}\)

\(\cos a=\sqrt{1-\dfrac{1}{26}}=\dfrac{5\sqrt{26}}{26}\)

\(A=\dfrac{\sin a+\cos a}{\sin a-\cos a}=\left(\dfrac{\sqrt{26}+5\sqrt{26}}{26}\right):\left(\dfrac{\sqrt{26}-5\sqrt{26}}{26}\right)\)

\(=\dfrac{6\sqrt{26}}{-4\sqrt{26}}=\dfrac{-3}{2}\)

Đặt \(x=\alpha\)

a: \(\dfrac{1}{\cos^2x}=1+\tan^2x=1+\dfrac{1}{9}=\dfrac{10}{9}\)

nên \(\cos x=\dfrac{3\sqrt{10}}{10}\)

=>\(\sin x=\dfrac{\sqrt{10}}{10}\)

b: \(\dfrac{1}{\sin^2x}=1+\cot^2x=1+\dfrac{9}{16}=\dfrac{25}{16}\)

\(\Leftrightarrow\sin x=\dfrac{4}{5}\)

hay \(\cos x=\dfrac{3}{5}\)