K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Đáp án D

Số phần tử của không gian mẫu là  Ω = C 6 1 . C 6 1 = 6 . 6 = 36 .

31 tháng 8 2018

Chọn D

30 tháng 4 2023

Không gian mẫu \(\Omega=\left\{S;N;1;2;3;4;5;6\right\}\)

\(\Rightarrow n\left(\Omega\right)=8\)

\(A=\left\{S;2;4;6\right\}\)

\(\Rightarrow n\left(A\right)=4\)

Xác suất của biến cố \(A\) :

\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{8}=\dfrac{1}{2}\)

A={3;6}

B={4}

Hai biến cố này không thể đồng thời xảy ra được vì \(A\cap B=\varnothing\)

14 tháng 12 2018

Chọn C

Ta có:  ∑ k   =   0 2020 C 2020 k   -   ∑ k   =   0 2019 C 2019 k    

Vì một đồng xu có hai mặt nên khi gieo 2019 đồng xu phân biệt ta có 2 2019  kết quả có thể xảy ra của phép thử. Vậy số

phần tử của không gian mẫu là n( Ω ) =  2 2019 .

a: \(\Omega=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;5\right);\left(6;6\right)\right\}\)

b: A={(1;2); (2;1)}

=>P(A)=2/36=1/18

B={(4;1); (5;2); (6;3); (1;4); (2;5); (3;6)}

=>P(B)=6/36=1/6

22 tháng 8 2023

tham khảo

Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 5" là: 4

Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 10" là: 3

Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5'' là:\(3+4=7\)

Xác suất của biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5" là: \(\dfrac{7}{36}\)

\(\Rightarrow C\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega  \right) = 6.6 = 36\)

A = {(1; 1);           (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)

B = {(1; 2);           (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)

C = {(2; 6);           (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)

D = {(1; 6);           (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)

Do đó

\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)

Mặt khác

AC = \(\emptyset  \Rightarrow P\left( {AC} \right) = 0\)

BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)

CD = \(\emptyset  \Rightarrow P\left( {CD} \right) = 0\)

Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)

Vậy các cặp biến cố A và C; B và C, C và D không độc lập.