Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1;n\in Z^+\)
Khi n chẵn thì \(\left(-1\right)^n=1\)
=>\(u_n=cos\left(\dfrac{\Omega}{2n}\right)\)
=>\(0< =u_n< =1\)
=>\(\left(u_n\right)\) bị chặn ở khoảng [0;1]
Khi n lẻ thì \(\left(-1\right)^n=-1\)
=>\(u_n=-cos\left(\dfrac{\Omega}{2n}\right)\)
\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1\)
=>\(0>=-cos\left(\dfrac{\Omega}{2n}\right)>=-1\)
=>\(0>=u_n>=-1\)
=>\(\left(u_n\right)\) bị chặn ở khoảng [-1;0]
b: \(-1< =\dfrac{1}{5^n}< =0\)
=>\(-\sqrt{2}< =\dfrac{\sqrt{2}}{5^n}< =0\)
=>\(-\sqrt{2}< =t_n< =0\)
Vậy: Dãy số bị chặn ở khoảng \(\left[-\sqrt{2};0\right]\)
a: \(u_{n+1}-u_n\)
\(=2-3\left(n+1\right)-2+3n\)
=-3n-3+3n
=-3<0
=>Đây là dãy giảm
b: \(u_{n+1}-u_n\)
\(=\dfrac{n+2}{n+1}-\dfrac{n+1}{n}\)
\(=\dfrac{n^2+2n-n^2-2n-1}{n\left(n+1\right)}=\dfrac{-1}{n\left(n+1\right)}< 0\)
=>Đây là dãy giảm
c: \(u_{n+1}-u_n==\dfrac{1}{n+2}-\dfrac{1}{n+1}\)
\(=\dfrac{n+1-n-2}{\left(n+1\right)\left(n+2\right)}=\dfrac{-1}{\left(n+1\right)\left(n+2\right)}< 0\)
=>Đây là dãy giảm
d: \(\dfrac{u_{n+1}}{u_n}=\dfrac{2^{n+1}}{2^n}=2>1\)
=>Đây là dãy tăng
a) Xét hiệu un+1 - un = - 2 - ( - 2) = - .
Vì < nên un+1 - un = - < 0 với mọi n ε N* .
Vậy dãy số đã cho là dãy số giảm.
b) Xét hiệu un+1 - un =
=
Vậy un+1 > un với mọi n ε N* hay dãy số đã cho là dãy số tăng.
c) Các số hạng ban đầu vì có thừa số (-1)n, nên dãy số dãy số không tăng và cũng không giảm.
d) Làm tương tự như câu a) và b) hoặc lập tỉ số (vì un > 0 với mọi n ε N* ) rồi so sánh với 1.
Ta có với mọi n ε N*
Vậy dãy số đã cho là dãy số giảm
a) Dãy số un = 2n - 1: Đây là một dãy số tăng với hệ số tăng là 2.
b) Dãy số un = 3 - 2n: Đây là một dãy số giảm với hệ số giảm là 2.
c) Dãy số un = n + 2n: Đây là một dãy số tăng với hệ số tăng là 3.
d) Dãy số un = 2n: Đây là một dãy số tăng với hệ số tăng là 2.
e) Dãy số un = 3n: Đây là một dãy số tăng với hệ số tăng là 3.
a: \(u_{n+1}-u_n=2\left(n+1\right)-1-2n+1\)
\(=2n+2-2n=2>0\)
=>Đây là dãy tăng
b: \(u_{n+1}-u_n=-2\left(n+1\right)+3+2n-3=-2n-2+2n=-2< 0\)
=>Đây là dãy giảm
d: \(u_{n+1}-u_n=\dfrac{2}{n+1}-\dfrac{2}{n}=\dfrac{2n-2n-2}{n\left(n+1\right)}=-\dfrac{2}{n\left(n+1\right)}< 0\)
=>Đây là dãy giảm
e: \(\dfrac{u_{n+1}}{u_n}=\dfrac{3^{n+1}}{3^n}=3>1\)
=>Đây là dãy tăng