Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x+y=\frac{x}{y}$
$y(x+y)=x$
$x(y-1)+y^2=0$
$x(y-1)=-y^2$
Nếu $y=1$ thì $x+1=x$ (vô lý). Do đó $y\neq 1$
$\Rightarrow x=\frac{y^2}{1-y}$.
Khi đó:
$x+y=3(x-y)$
$\Leftrightarrow \frac{y^2}{1-y}+y=\frac{3y^2}{1-y}-3y$
$\Leftrightarrow \frac{y^2}{1-y}=2y$
$\Leftrightarrow y(\frac{y}{1-y}-2)=0$. Rõ ràng $y\neq 0$ nên $\frac{y}{1-y}-2=0$
$\Leftrightarrow y=2(1-y)\Leftrightarrow y=\frac{2}{3}$
$x=\frac{y^2}{1-y}=\frac{4}{3}$
x+y=3(x-y)\(\Rightarrow\)x+y=3x-3y\(\Rightarrow\)y+3y=3x-x\(\Rightarrow\)4y=2x\(\Rightarrow\)2y=x
\(\Rightarrow\)x : y=2\(\Rightarrow\)x+y=2\(\Rightarrow\)2y+y=2\(\Rightarrow\)3y=2
\(\Rightarrow\)y=\(\frac{2}{3}\); x=\(\frac{1}{3}\)
a) Ta có: \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|\ge0\)
Mà \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\2-3y=0\\3-4z=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\3y=2\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2};y=\dfrac{2}{3};z=\dfrac{3}{4}\)
b)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0x=-1(L)
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy y=-1 x=1/2
c)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x-1=x
=>0x=1(L)
*)y=-1
=>x+1=-x
=>2x=-1
=>x=-1/2
Vậy y=-1 x=-1/2
d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
=>(x+y+z)2=9
=>x+y+z=3 hoặc x+y+z=-3
*)x+y+z=3
=>x=-5:3=-5/3
y=9:3=3
z=5:3=5/3
*)x+y+z=-3
=>x=-5:(-3)=5/3
y=9:(-3)=-3
z=5:(-3)=-5/3
Có \(x:y=5:\left(-3\right)\Rightarrow\frac{x}{y}=\frac{5}{-3}\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-3}=\frac{x-y}{5-\left(-3\right)}=\frac{-16}{8}=-2\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=-2\Rightarrow x=\left(-2\right)\cdot5=-10\\\frac{y}{-3}=-2\Rightarrow y=\left(-2\right)\left(-3\right)=6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-10;6\right)\)
Ta có: \(x+y=3\left(x-y\right)\Rightarrow x+y=3x-3y\Leftrightarrow x-3x=-3y-y\Leftrightarrow-2x=-4y\Leftrightarrow x=2y\)
Thay x=2y vào x/y ta được: \(\frac{x}{y}=\frac{2y}{y}=2\)
Mà \(x+y=\frac{x}{y}=3\left(x-y\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=2\\3\left(x-y\right)=2\end{cases}\Rightarrow\hept{\begin{cases}x+y=2\\x-y=\frac{2}{3}\end{cases}}}\)
=> \(x+y+x-y=2+\frac{2}{3}\Rightarrow2x=\frac{8}{3}\Rightarrow x=\frac{4}{3}\)
\(\Rightarrow y=2-\frac{4}{3}=\frac{2}{3}\)
Vậy x = 4/3, y = 2/3