K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

Ta có: \(5x+2y⋮17\)

\(\Leftrightarrow5x+2y+17\left(x+y\right)⋮17\)

\(\Leftrightarrow22x+19y⋮17\)

\(\Leftrightarrow\left(22x+19y\right)-\left(5x+2y\right)6⋮17\)

\(\Leftrightarrow-8x+7y⋮17\)

\(\Leftrightarrow9x+7y⋮17\)( đpcm)

17 tháng 9 2016

Đặt A = 2x + 3y; B = 9x + 5y

Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)

= (18x + 27y) - (18x + 10y)

= 18x + 27y - 18x - 10y

= 17y

+ Nếu A chia hết cho 17 thì 9A chia hết cho 17; 17y chia hết cho 17

=> 2B chia hết cho 17

Mà (2;17)=1 => B chia hết cho 17

+ Nếu B chia hết cho 17 thì 2B chia hết cho 17; 17y chia hết cho 17 => 9A chia hết cho 17

Mà (9;17)=1 => A chia hết cho 17

Vậy với mọi x,y thuộc Z ta có: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17 (đpcm)

29 tháng 11 2017

vậy đều ngược lại có đúng hay không

DD
23 tháng 7 2021

\(x^2+y^2+z^2-\left(x+y+z\right)=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

có \(x\left(x-1\right),y\left(y-1\right),z\left(z-1\right)\)là các tích của hai số nguyên liên tiếp nên chia hết cho \(2\)do đó 

\(\left(x+y+z\right)\equiv\left(x^2+y^2+z^2\right)\left(mod2\right)\)

\(\Rightarrow x+y+z⋮2\)(vì \(x^2+y^2+z^2⋮2\)

\(\Leftrightarrow x+7y+13z⋮2\).

Mà \(x+7y+13z>2\)(do \(x,y,z\)dương) 

nên \(x+7y+13z\)là hợp số. 

DD
6 tháng 10 2021

a) \(8x+3y⋮11\Leftrightarrow7\left(8x+3y\right)⋮11\)(vì \(\left(7,11\right)=1\))

\(\Leftrightarrow\left[\left(56x-5.11x\right)+\left(21y-2.11y\right)\right]⋮11\)

\(\Leftrightarrow\left(x-y\right)⋮11\).

b) \(\left(4x+3y\right)⋮13\Leftrightarrow5\left(4x+3y\right)⋮13\)(vì \(\left(5,13\right)=1\))

\(\Leftrightarrow\left[\left(20x-13x\right)+\left(15y-13y\right)\right]⋮13\)

\(\Leftrightarrow\left(7x+2y\right)⋮13\).

2 tháng 1 2018

Tui biet nhung ko tra loi dc

3 tháng 9 2017

đúng yo đấy hả