Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2012.\left|x-2011\right|+\left(x-2011\right)^2=2013\left|2011-x\right|\)
\(2012.\left|x-2011\right|+\left|x-2011\right|^2=2013\left|x-2011\right|\)
\(\left|x-2011\right|\left(2012+\left|x-2011\right|\right)=2013\left|x-2011\right|\)
\(\Rightarrow2012+\left|x-2011\right|=2013\)
\(\left|x-2011\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x=2012\\x=-2010\end{cases}}\)
Ta có: \(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)
\(\Rightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)
\(\Rightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
\(\Rightarrow x=-2014\)
=>2012|x-2011|-|x-2011|+(x-2011)^2+2013>0
=>2011|x-2011|+(x-2011)^2+2013>0(luôn đúng)
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
tên níck của bạn đáng ra là kawaii chứ không phải kawai đâu
Ủng hộ tíck mik nha
Pls đó ~~~
\(\frac{x+1}{2013}+\frac{x+2}{2012}+\frac{x+3}{2011}=-3\)
=> \(\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=-3+3\)
=> \(\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=0\)
=> \(\left(x+2014\right).\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\right)=0\)
Do \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}\ne0\)
=> x + 2014 = 0
=> x = -2014
2012 . | x - 2011| + (x-2011)2 = 2013 . | 2011 - x|
|x-2011|.|x-2011| + 2012 . | x - 2011| - 2013 . | 2011- x| =0
|x - 2011|.| x - 2011| + 2012 .| x - 2011| - 2013 | x - 2011| = 0
| x- 2011| .| x -2011| - | x - 2011| = 0
| x - 2011|. { | x - 2011| - 1} = 0
\(\left[{}\begin{matrix}\left|x-2011\right|=0\\\left|x-2011\right|-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2011\\x=2012\\x=2010\end{matrix}\right.\)
Kết luận x \(\in\) { 2010; 2011; 2012}