Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 2² + 2³ + ... + 2⁶⁰
= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)
= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)
= 2.3 + 2³.3 + ... + 2⁵⁹.3
= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3
Vậy A ⋮ 3
------
A = 2 + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 7
--------
A = 2 + 2² + 2³ + ... + 2⁶⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)
= 30.(1 + 2⁴ + ... + 2⁵⁶)
= 5.6.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 5
Vậy A ⋮ 5
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6.\left(1+2^2+...+2^{58}\right)\)
Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)
Vậy \(A⋮3\)
___________
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)
\(A=14+...+2^{57}.14\)
\(A=14.\left(1+...+2^{57}\right)\)
Vì \(14⋮7\) nên \(14.\left(1+...2^{57}\right)⋮7\)
Vậy \(A⋮7\)
____________
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{56}.30\)
\(A=30.\left(1+...+2^{56}\right)\)
Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)
Vậy \(A⋮7\)
\(#WendyDang\)
A=2(1+2)+2^3(1+2)+...+2^59(1+2)
A=2.3+2^3.3+...+2^59.3
A=3(2+2^3+...+2^59) chia hết cho 3
Vậy a chia hết cho 3
A=2.(1+2+4)+...+2^58(1+2+4)
A=2.7+...+2^58.7
A=7.(2+..+2^58) chia hết cho7
Vậy A chia hết cho 7
A=2(1+2+4+8)+...+2^57(1+2+4+8)
A=2.15+...+2^57.15
A=15.(2+...+2^57) chia hết cho 15
Vậy A chia hết cho 15
Vậy A chia hết cho 3,7,15
\(A=2+2^2+2^3+..........+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+.........+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..........+2^{57}\left(1+2+2^2+2^3\right)\)
\(\Leftrightarrow A=2.15+2^5.15+........+2^{57}.15\)
\(\Leftrightarrow A=15\left(2+2^5+......+2^{57}\right)⋮15\)
\(\Leftrightarrow A⋮15\left(đpcm\right)\)
\(A=2+2^2+2^3+...+2^{60}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2.\left(1+2+2^2+2^3\right)+2^5.\left(1+2+2^2+2^3\right)+...+2^{57}.\left(1+2+2^2+2^3\right)\)
\(\Rightarrow A=2.15+2^5.15+...+2^{57}.15\)
\(\Rightarrow A=15.\left(2+2^5+...+2^{57}\right)\)
\(\Rightarrow A⋮15\)
A=2+2²+2³+...+260A=2+2²+2³+...+260
⇔ A=(2+2²)+...+(259+260)A=(2+2²)+...+(259+260)
⇔ A=2.(1+2)+...+259.(1+2)A=2.(1+2)+...+259.(1+2)
⇔ A=2.3+...+259.3A=2.3+...+259.3
⇔ A=3.(2+..+259)A=3.(2+..+259)
⇒ A⋮ 3
A=2+2²+2³+...+260A=2+2²+2³+...+260
⇔ A=(2+2²+2³)+...+(258+259260)A=(2+2²+2³)+...+(258+259260)
⇔ A=2.(1+2+2²)+...+258.(1+2+2²)A=2.(1+2+2²)+...+258.(1+2+2²)
⇔ A=2.7+...+258.7A=2.7+...+258.7
⇔ A=7.(2+...+258A=7.(2+...+258
⇒ A⋮ 7
Hiện tại mình chưa tìm ra sao chia hết cho 5 nên bạn tự làm nhé cảm ơn bạn
a/ \(A=2+2^2+2^3+.....+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+.......+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+......+2^{59}.3\)
\(=3\left(2+2^3+....+2^{59}\right)⋮3\left(đpcm\right)\)
b/Ta có :
\(A=2+2^2+2^3+.....+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+......+2^{58}\left(1+2+2^2\right)\)
\(=2.7+2^3.7+......+2^{58}.7\)
\(=7\left(2+2^3+.....+2^{58}\right)⋮7\left(đpcm\right)\)
c/ \(A=2+2^2+2^3+....+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+....+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+......+2^{57}.15\)
\(=15\left(2+2^5+......+2^{57}\right)⋮15\left(đpcm\right)\)
\(A=2+2^2+...+2^{59}+2^{60}\)\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{58}.7\) \(=7\left(2+2^4+...+2^{58}\right)\)
Dễ thấy A chia hết cho 7 (vì 7 chia hết cho 7)
2A= 2^2 + 2^3 + 2^4 + ...+ 2^61
2A - A = 2^2 + 2^3 + ... +2^61 - 2 - 2^2 -.. -2^60
A = 2^61 - 2
Đúng cho mình nha bạn
A=2+22+23+...+260
2A=2 (2+22+23+...+260)
2A=22+23+24+...+261
2A-A=(22+23+24+...+261)-(2+22+23+...+260)
A=261-2
ra kết quả lớn lắm
tich dung cho minh nha