K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2017

Đáp án C.

Ta có

y = − x 3 + x 2 − 3 x + 1 ⇒ y ' = − 3 x 2 + 2 x − 3 < 0 ;   ∀ x ∈ ℝ

suy ra hàm số nghịch biến trên  ℝ

Các hàm số a,b,e là các hàm số bậc nhất

2 tháng 1 2022

Giải thích chưa

23 tháng 11 2021

\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)

Hs bậc nhất là a,b,d,e

\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)

25 tháng 10 2021

a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)

b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)

c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)

a: Đây là hàm số bậc nhất

a=2; b=1

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

\(y'_1=-\dfrac{2}{\left(x-1\right)^2}\) nghịch biến trên R/{1}

\(y'_2=-3x^2+2x-3\) có nghiệm khi y' = 0

\(y'_3=4x^3+4x\) có nghiệm khi y' = 0

Vậy không có hàm số đơn điệu trên R.

18 tháng 12 2023

đơn điệu trên R là sao bạn? bạn chỉ mk cách nhận bt đc ko?

a: Thay x=-1 và y=5 vào y=ax+6, ta được:

6-x=5

hay x=1

b: Vì đồ thị hàm số y=ax+b đi qua hai điểm (1;1) và (0;-2) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1-b=1-\left(-2\right)=1+2=3\\b=-2\end{matrix}\right.\)

31 tháng 10 2018

Chọn B

+ Hàm số có tiệm cận đứng x=1 và tiệm cận ngang y= -1. Giao điểm của hai đường tiệm cận là I(1; -1) là tâm đối xứng của đồ thị. Mệnh đề 1 đúng, mệnh đề 3 sai.

+ Vì đường thẳng y=-x là một phân giác của góc tạo bởi 2 đường tiệm cận nên đường thẳng y=-x là một trục đối xứng của đồ thị hàm số. Mệnh đề 2 đúng.

+ Hàm số có tập xác định là R\{1}, nên hàm số không thể luôn đồng biến trên R.Mệnh đề 4 sai.

2 tháng 5 2018

Chọn A

25 tháng 11 2019

Ảnh đẹp thì

25 tháng 12 2023

Bài 1:

Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0

=>m>3

Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0

=>m<3

Bài 4:

a: Vì \(a=3-\sqrt{2}>0\)

nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R

b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)

Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)

Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)

Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)

=9-4-1

=9-5

=4

Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)

\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)