Giải giúp câu a và b nha m.n
Cảm ơn m.n trc nha
Cho ♤ ABC nhọn nội tiếp ĐT tâm O.Các Đ.Cao BH & CK lần lượt cắt ĐT tâm O tại E & F.
A) Gọi I là Giao điểm của BH và CK.C/M IH.IF=IK.IE
B) Khi ♤ ABC đều có cạnh = a Tính S hình giới hạn bởi dây BC và cung nhỏ BC của ĐT tâm O
Ai cần hình thì liên hệ fb mk nha
https://m.facebook.com/Nguyen.T.T.Quy
a. Ta có \(\widehat{IEF}=\widehat{BCF}\)(2 góc nội tiếp cùng chắn \(\widebat{BF}\)) (1)
\(\widehat{BKC}=\widehat{BHC}=90^o\)(do BH và CK là các đường cao của tam giác ABC) => tứ giác BKHClà tứ giác nội tiếp (2 đỉnh kề nhau của 1 tứ giác cùng nhìn 1 cạnh dưới các góc bằng nhau thì tứ giác đó nội tiếp)
BKHC là tứ giác nội tiếp => \(\widehat{IHK}=\widehat{BCF}\)(2 góc nội tiếp cùng chắn cung \(\widebat{BK}\)(2)
Từ (1) và (2) => \(\widehat{IEF}=\widehat{IHK}\)mà 2 góc này ở vị trí đồng vị => KH // EF
Áp dụng định lý Ta lét trong tam giác IEF với KH // EF ta được : \(\frac{IK}{IF}=\frac{IH}{IE}\)=> IK.IE = IH.IF (ĐPCM)
b. Khi tam giác ABC đều => trực tâm I của tam giác ABC vừa là tâm nội, tâm ngoại, trọng tâm của tam giác ABC tức là I trùng với O.
ABC đều => \(\widehat{BAC}=60^o=>\widehat{BOC}=120^o\)(góc ở tâm băng 2 lần số đo góc ở đỉnh)
Áp dụng công thức tính diện tích hình quạt tròn ta được diện tích hình quạt tròn tạo bởi tâm O và cung nhỏ \(\widebat{BC}\)là:
S = \(\frac{\alpha\pi R^2}{360}=\frac{120.\pi.R^2}{360}=\frac{\pi R^2}{3}\)( \(\alpha\)chính là góc ở tâm tạo bởi 2 bán kính và cung nhỏ \(\widebat{BC}\)hay nó chính là \(\widehat{BOC}\))(3)
OB = IB = R (I trùng O khi ABC đều) = \(\frac{2}{3}\)BH= \(\frac{2}{3}\). BC sin \(\widehat{BCH}\)(hệ thức lượng giác trong tam giác vuông BHC nên ta có BH = BC. sin \(\widehat{BCH}\)) = \(\frac{2}{3}.a.sin60^o=\frac{2}{3}.a.\frac{\sqrt{3}}{2}=a.\frac{\sqrt{3}}{3}\)(4) . Thay (4) vào (3) tính được S nhé.
Diện tích tam giác OBC = \(\frac{1}{2}.OH.BC=\frac{1}{2}.\frac{1}{3}BH.BC=\frac{1}{2}.\frac{1}{3}.\frac{a.\sqrt{3}}{2}.a=\frac{a^2.\sqrt{3}}{12}\)(vì ABC đều nên O vừa là tâm nội, tâm ngoại, trọng tâm, trực tâm mà )
Diện tích phần giới hạn = diện tích hình nón - diện tích tam giác OBC (nhìn hình là thấy). Bạn thay vào tính nốt nhé !!!