giúp em với ạ, em còn mỗi câu này là làm xong bài rồi ạ
Cho tam giác ABC vuông tại A, đường cao AH. Biết
HB = 9 cm; HC = 16 cm. Tính diện tích tam tích tam giác ABC và số đo góc HAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=9\cdot25=225\\AC^2=16\cdot25=400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{matrix}\right.\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\)
\(\Leftrightarrow\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)
b: BE>BC+CE
=BC+1/2CH
=BC+1/2*1/2(HB+HC)
=BC+1/4(HB+HC)>BC+1/4BC
=>BE>5/4BC>3/BC
a: Xét tứ giác AKHB có
\(\widehat{AKB}=\widehat{AHB}=90^0\)
=>AKHB là tứ giác nội tiếp đường tròn đường kính AB
=>A,K,H,B cùng thuộc đường tròn đường kính AB
b1: AC=5cm
mà AB=AC
nên AB=5cm
ΔAKB vuông tại K
=>\(AK^2+KB^2=AB^2\)
=>\(KB^2=5^2-4^2=9\)
=>\(KB=\sqrt{9}=3\left(cm\right)\)
Xét ΔAKB vuông tại K có KI là đường cao
nên \(AI\cdot AB=AK^2\)
=>\(AI\cdot5=4^2=16\)
=>AI=16/5=3,2(cm)
b2: Gọi O là trung điểm của AB
Theo đề, ta có: KF\(\perp\)AB tại I
=>OI\(\perp\)FK tại I
Ta có: ΔOKF cân tại O
mà OI là đường cao
nên I là trung điểm của FK
Xét ΔAFK có
AI là đường cao
AI là đường trung tuyến
Do đó: ΔAFK cân tại A
b, Vì C là giao 2 tiếp tuyến CH và CN của (A;AH) nên AC là phân giác góc NCH
Vì B là giao 2 tiếp tuyến BH và BM của (A;AH) nên AB là phân giác góc HBM
Do đó \(\widehat{MBC}+\widehat{NCB}=2\left(\widehat{ACH}+\widehat{ABH}\right)=2\cdot90^0=180^0\)
Mà 2 góc này ở vị trí trong cùng phía nên BM//CN
c, Vì BM,CN là tiếp tuyến (A;AH) nên \(BM\perp AM;CN\perp AN\)
Mà BM//CN nên AM trùng AN hay A;M;N thẳng hàng
Áp dụng HTL: \(AH^2=BH\cdot HC=144\Rightarrow AH=12\left(cm\right)\)
\(BC=BH+HC=25\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot12\cdot25=150\left(cm^2\right)\)
Ta có \(\tan\widehat{HAB}=\dfrac{HB}{HA}=\dfrac{9}{12}=\dfrac{3}{4}\approx\tan37^0\)
Vậy \(\widehat{HAB}\approx37^0\)