K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(MH^2=HN\cdot HP\)

\(\Leftrightarrow HP=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)

Diện tích tam giác MNP là:

\(S_{MNP}=\dfrac{MH\cdot NP}{2}=\dfrac{2.4\cdot5}{2}=6\left(cm^2\right)\)

4 tháng 8 2021

Áp dụng hệ thức trong tam giác vuông:

`MH^2 =NH.PH`

`=>PH=MH^2 : NH = 2,4^2 : 1,8=3,2(cm)`

`=> NP=NH+PH=5(cm)`

`=> S= 1/2 . MH .NP =6(cm^2)`

17 tháng 12 2023

ΔMNP vuông tại M

=>\(NP^2=MN^2+MP^2\)

=>\(NP^2=3^2+4^2=25\)

=>\(NP=\sqrt{25}=5\left(cm\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH\cdot NP=MN\cdot MP\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=12/5=2,4(cm)

Xét ΔPMN vuông tại M có MH là đường cao

nên \(PH\cdot PN=PM^2\)

=>\(PH\cdot5=4^2=16\)

=>PH=16/5=3,2(cm)

25 tháng 9 2018

MH =  3 5 cm

Sửa đề: MP=24cm

NP=căn 18^2+24^2=30cm

NH=MN^2/NP=18^2/30=324/30=10,8cm

MH=18*24/30=14,4cm

 

28 tháng 7 2023

loading...

28 tháng 7 2023

(Tự vẽ hình)

- Xét △MNP vuông tại M, áp dụng định lí Pytago:

\(^{NM^2}\)+\(MP^2\)=\(NP^2\)

=\(72^2\)+\(96^2\)=\(NP^2\)

\(NP^2\)=\(72^2\)+\(96^2\)=14400

\(NP\)=\(\sqrt{14400}\)=120cm

 - Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:

\(MN^2\)=\(NH.NP\)

\(72^2\)=\(NH.120\)

\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm

\(MH.NP\)=\(MP.MN\)

⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm

 

9 tháng 9 2021

3\(\sqrt{5}\)

9 tháng 9 2021

con gi nua ko bi thieu de

DD
20 tháng 6 2021

\(NP=4,5+6=10,5\left(cm\right)\)

Áp dụng tích chất đường phân giác: 

\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).

Áp dụng định lí Pythagore:

\(NP^2=MP^2+MN^2\)

\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)

\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)

\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)

\(HE=NE-NH=4,5-3,78=0,72\)

\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

12 tháng 8 2016

ta sử dụng hệ thức lượng trong tam giác vuông  

\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)

mà MN=3MP/4

they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)

=> MP=\(4\sqrt{15}\)

bài 10: gống cái trên :

tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)

áp dungnj đl pita go ta có : 

NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)

6 tháng 10 2021

Sửa đề: Đường cao MH

Áp dụng HTL:

\(MH^2=NH.HP\)

\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)

\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)