Câu 9. (2 điểm) Tìm số hữu tỉ $x$ trong các tỉ lệ thức sau:
a) $\dfrac x{-4} = \dfrac{-11}2$;
b) $\dfrac{15 - x}{x + 9} = \dfrac35$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{x}{-3}\)= \(\dfrac{7}{4}\) ⇒ x = \(\dfrac{7}{4}\)x (-3) ⇒ x = - \(\dfrac{21}{4}\)
b, \(\dfrac{x+9}{15-x}\) = \(\dfrac{2}{3}\) ⇒ 3(x+9) = 2( 15-x) ⇒ 3x + 27 = 30 - 2x
⇒ 3x + 2x = 30 - 27 ⇒
5x = 3 ⇒ x = 3 : 5 ⇒ x = \(\dfrac{3}{5}\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
\(\begin{array}{l}a)\dfrac{x}{6} = \dfrac{{ - 3}}{4}\\x = \dfrac{{( - 3).6}}{4}\\x = \dfrac{{ - 9}}{2}\end{array}\)
Vậy \(x = \dfrac{{ - 9}}{2}\)
\(\begin{array}{l}b)\dfrac{5}{x} = \dfrac{{15}}{{ - 20}}\\x = \dfrac{{5.( - 20)}}{{15}}\\x = \dfrac{{ - 20}}{3}\end{array}\)
Vậy \(x = \dfrac{{ - 20}}{3}\)
\(7 : 21 = \dfrac{7}{{21}} = \dfrac{1}{3}\);
\(\dfrac{1}{5}:\dfrac{1}{2} = \dfrac{1}{5} .\dfrac{2}{1} = \dfrac{2}{5}\);
\(\dfrac{1}{4}:\dfrac{3}{4} = \dfrac{1}{4}.\dfrac{4}{3} = \dfrac{1}{3}\);
\( 1,1 : 3,2 = \dfrac{{1,1}}{{3,2}}=\dfrac{11}{32}\);
\(1 : 2,5 =\dfrac{1}{{2,5}}=\dfrac{10}{25}=\dfrac{2}{5}\).
Ta thấy có các tỉ số bằng nhau là :
+) \(\dfrac{1}{4}:\dfrac{3}{4}\) và \(7 : 21\) (vì cùng bằng \(\dfrac{1}{3}\)) nên ta có tỉ lệ thức : \(\dfrac{1}{4}:\dfrac{3}{4} = 7:21\).
+) \(\dfrac{1}{5}:\dfrac{1}{2}\) và \(1 : 2,5\) (vì cùng bằng \(\dfrac{2}{5}\)) nên ta có tỉ lệ thức : \(\dfrac{1}{5}:\dfrac{1}{2} = 1 : 2,5\).
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$
Bài 1 : Ta thấy
\(\dfrac{10}{15}=\dfrac{2}{3};\dfrac{14}{21}=\dfrac{2}{3}\Rightarrow10:15=14:21\Rightarrow\dfrac{10}{15}=\dfrac{14}{21}\)
\(\dfrac{16}{\left(-4\right)}=-4;\dfrac{12}{\left(-3\right)}=-4\Rightarrow16:\left(-4\right)=12:\left(-3\right)\Rightarrow\dfrac{16}{\left(-4\right)}=\dfrac{12}{\left(-3\right)}=-4\)
\(\dfrac{\left(-5\right)}{15}=\dfrac{\left(-1,2\right)}{3,6}=-\dfrac{1}{3}\Rightarrow\left(-5\right):15=\left(-1,2\right):3,6\)
\(\dfrac{2}{3}:\dfrac{1}{4}=\dfrac{2}{3}.4=\dfrac{8}{3};\dfrac{16}{9}:\dfrac{16}{24}=\dfrac{16}{9}.\dfrac{24}{16}=\dfrac{8}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}:\dfrac{1}{4}\right)=\left(\dfrac{16}{9}:\dfrac{16}{24}\right)=\dfrac{8}{3}\)
Bài 2 :
a) \(14.15=10.21\Rightarrow\dfrac{14}{10}=\dfrac{21}{15}=\dfrac{7}{5}\)
b) \(0,2.4,5=0,6.1,5\Rightarrow\dfrac{0,2}{0,6}=\dfrac{1,5}{4,5}=\dfrac{1}{3}\)
`x/(-4) = (-11)/2`
`=> 2x=-4.(-11)`
`=> 2x=44`
`=>x=44:2`
`=>x=22`
`---`
`(15-x)/(x+9) =3/5`
`=> (15-x).5=(x+9).3`
`=> 75-5x =3x+27`
`=> -5x -3x=27 -75`
`=> -8x=-48`
`=>x=-48:(-8)`
`=>x=6`
a) x−4=−112−4x=2−11
x=(−11).(−4)2x=2(−11).(−4)
x=22x=22.
b) 15−xx+9 =35x+915−x =53
(15−x).5 =(x+9).3(15−x).5 =(x+9).3
75−5x =3x+2775−5x =3x+27
8x=488x=48
x=6x=6.