chứng tỏ:
a) M=3+3^2+3^3+...+3^90chia hết cho 4;12;13
b)N=4+4^2+4^3+...+4^2016chia hết cho 4;20;85
( nhanh nhanh giúp mk vs, mk cần gấp lắm, xin lun á)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 + 34 + ... 3100
A = 31 + 32 + 33 + 34 + ...... 3100
A = ( 3100 - 31 ) : 11
A = 398 - ( 32 + 34 )
A = 392
A không chia hết cho 12 vì 12 là thừa số nguyên tố chẵn
+) \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+....+3^{99}\left(1+3\right)\)
\(\Rightarrow A⋮4\)
+) \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=3\left(1+3+3^2\right)+.....\)( tương tự nhóm liên tiếp 3 số )
\(A=3.13+......⋮13\)
\(\Rightarrow A⋮̸12\)
không chia hết cho 12 ghép ba số lại mà tính nhé chúc may mắn
A = 3 + 3^2 + 3^3 + ... + 3^20
A x 3 = 3^2 + 3^3 + 3^4 + ... + 3^21
A x 3 chia hết cho 3 => A chia hết cho 3
A = \(3^1+3^2+3^3+...+3^{60}\)
A = 3 ( 1 + 3 ) + \(3^3\left(1+3\right)\)+ ..... + \(3^{59}\left(1+3\right)\)
A = 3 . 4 + \(3^3.4\) + ..... + \(3^{59}.4\)
A = 4 ( \(3+3^3+....+3^{59}\)) chia hết cho 4
Vậy A = \(3^1+3^2+3^3+...+3^{60}\)chia hết cho 4
n chia hết cho 3 \(\Rightarrow\)n^3 nà n^2 chia hết cho 9
Mà 3 chia 9 dư 3 \(\Rightarrow\)A chia 9 dư 3
\(\Rightarrow\)A không chia hết cho 9(đpcm)
Ta có:
\(A=1+3+3^2+...+3^{10}+3^{11}\)
\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=40+...+3^8.\left(1+3+3^2+3^3\right)\)
\(A=40+...+3^8.40\)
\(A=40.\left(1+...+3^8\right)\)
Vì \(40⋮5\) và \(8\) nên \(40.\left(1+...+3^8\right)⋮5\) và \(8\)
Vậy \(A⋮5\) và \(8\)
_________
Ta có:
\(B=1+5+5^2+...+5^7+5^8\)
\(B=\left(1+5+5^2\right)+...\left(5^6+5^7+5^8\right)\)
\(B=31+...+5^6.\left(1+5+5^2\right)\)
\(B=31+...+5^6.31\)
\(B=31.\left(1+...+5^6\right)\)
Vì \(31⋮31\) nên \(31.\left(1+...+5^6\right)⋮31\)
Vậy \(B⋮31\)
\(#WendyDang\)
\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)
\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)
\(a,S=3+3^2+3^3+...+3^{20}\)
Ta thấy:\(3+3^2=12⋮12\)
\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)
\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)
\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)
Ủa cái này có gì đâu:vv
Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)
Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)
-> Đpcm
a. Ta có : 3100 + 19990 = 23090 có tổng các chữ số là : 2 + 3 + 0 + 9 + 0 = 14
Vì 14 \(⋮̸\)3 nên 3100 + 19990 \(⋮̸\)3 => đpcm
Vậy 3100 + 19990 không chia hết cho 3
b. Gọi 4 số tự nhiên liên tiếp đó là : n , n +1 , n + 2 , n + 3 ( n \(\inℕ\))
Do đó tổng 4 số tự nhiên liên tiếp là : n + ( n + 1 ) + ( n + 2 ) + ( n + 3 ) = n + n + 1 + n + 2 + n + 3
= ( n + n + n + n ) + ( 1 + 2 + 3 )
= 4n + 6
Ta thấy 4n \(⋮\)4 mà 6 \(⋮̸\)4 nên 4n + 6 \(⋮̸\)4 => đpcm
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Hok tốt
# owe