3(x-1)=2(y-2);4(y-2)=3(z-3) và 2x=3y-z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)
vd câu 1:
ta có x-y=4 =>x=4+y
ta có pt:
4+y/y-2=3/2
=>8+2y=3y-6
=>-y=-14
=>y=14
=>x=4+y=4+14=18
các bài khác cũng tương tự thôi bạn
a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)
=>x+1=1 và y-2=1/2
=>x=0 và y=5/2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)
=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6
=>x-2y=9 và 2x-y=12
=>x=5; y=-2
c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
\(\dfrac{4x^2\left(y+z\right)^5}{2x\left(y+z\right)^3}=2x\left(y+z\right)^2\)
1) x2 + x - y2 + y = (x2 - y2) + (x + y) = (x - y)(x + y) + (x + y) = (x - y + 1)(x + y)
2) 4x2 - 9y2 + 4x - 6y = (4x2 - 9y2) + (4x - 6y) = (2x - 3y)(2x + 3y) + 2(2x - 3y) = (2x - 3y)(2x + 3y + 2)
3) x2 + x + y2 + y + 2xy = (x2 + 2xy + y2) + (x + y) = (x + y)2 + (x + y) = (x + y)(x + y + 1)
4) -x2 + 5x + 2xy - 5y - y2 = -(x2 - 2xy + y2) + (5x - 5y) = -(x - y)2 + 5(x - y) = (x - y)(y - x + 5)
5) x2 - y2 + 2x + 1 = (x2 + 2x + 1) - y2 = (x + 1)2 - y2 = (x + 1 + y)(x - y + 1)
6) x2 - 1 - y2 + 2y = x2 - (y2 - 2y + 1) = x2 - (y - 1)2 = (x - y + 1)(x + y - 1)
7) x2 + 2xz - y2 + 2uy + z2 - u2 =(x2 + 2xz + z2) - (y2 - 2uy + u2) = (x + z)2 - (y - u)2 = (x + z - y + u)(x + z + y - u)
8) x3 + 3x2y + x + 3xy2 + y + y3 = (x3 + 3x2y + 3xy2 + y3) + (x + y) = (x + y)3 + (x + y) = (x + y)(x2 + 2xy + y2 + 1)
9) x3 + y(1 - 3x2) + x(3y2 - 1) - y3 = x3 + y - 3x2y + 3xy2 - x - y3 = (x3 - 3x2y + 3xy2 - y3) - (x - y) = (x - y)3 - (x - y) = (x - y)(x2 - 2xy+y2-1)
a) Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{5}{x-1}-\dfrac{15}{y-1}=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{16}{y-1}=-80\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=\dfrac{-1}{5}\\\dfrac{1}{x-1}=18+\dfrac{3}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x-1=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{4}{5}\end{matrix}\right.\)
Đề phải là \(2x+3y-z=50\) chứ?
Theo đề ra, ta có:
\(3\left(x-1\right)=2\left(y-2\right)\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}\)
\(4\left(y-2\right)=3\left(z-3\right)\Rightarrow\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
\(\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{3}\)
\(\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{3}=\dfrac{2x-2+3y-6-z+3}{4+9+\left(-3\right)}=\dfrac{50-5}{10}=\dfrac{45}{10}=\dfrac{9}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{9}{2}\Rightarrow x=10\\\dfrac{y-2}{3}=\dfrac{9}{2}\Rightarrow y=\dfrac{31}{2}\\\dfrac{z-3}{4}=\dfrac{9}{2}\Rightarrow z=21\end{matrix}\right.\)