Cho \(C=\dfrac{n+1}{n-3}\left(n\in Z\right)\)
a) Tìm n để \(2C-1\in Z\)
b) Tìm n để C tối giản
c) Tìm n để C > 0; C < 0; C = 0; C có nghĩa, C vô nghĩa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)
Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản
\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn
Vậy \(n=2k\left(k\in Z\right)\)
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
a) Để A=\(\frac{n-5}{n+1}\)có giá trị nguyên thì n-5 chia hết cho n+1
=>n+1-6 chia hết cho n+1
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=>n thuộc {0;1;2;5;-2;-3;-4;-7}
Vậy.....
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A là phân số tối giản <=> \(\frac{4}{n-3}\) là phân số tối giản
Để A là phân số tối giản thì: n + 1 chia hết cho n - 3
=> n -3 + 4 chia hết cho n - 3
mà n - 3 chia hết cho n - 3
=> 4 chia hết cho n - 3 hay n - 3 thuộc Ư(4)
=> n - 3 thuộc { -1 ; 1 ; 2 ; -2 ; 4 ; - 4 }
=> n thuộc { 2 ; 4 ; 5 ; 1 ; 7 ; - 1 }
a. Để \(M\) là phân sô thì \(3n+1;n-3\in Z;n-3\ne0\)
\(\Leftrightarrow n\in Z;n\ne3\)
Vậy \(n\in Z;n\ne3\) thì \(M\) là phân số
b. Giả sử phân số M chưa tối giản
\(\Leftrightarrow3n+1;n-3\) có ước chung là số nguyên tố
Gọi \(d=ƯC\left(3n+1;n-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+1⋮d\\n-3⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+1⋮d\\3n-9⋮d\end{matrix}\right.\)
\(\Leftrightarrow10⋮d\)
\(\Leftrightarrow d\inƯ\left(10\right)\)
\(\Leftrightarrow d=1;2;5\)
+) \(d=2\Leftrightarrow n-3=⋮2\)
\(\Leftrightarrow n=2k+3\)
Khi \(n=2k+3\) thì \(3n+1=3\left(2k+1\right)+1=6k+2⋮2\)
+) \(d=5\Leftrightarrow n-3⋮5\)
\(\Leftrightarrow n=5k+3\)
Khi \(n=5k+3\) thì \(3\left(5k+3\right)+1=15k+5⋮5\)
Vậy ...
a: \(A=2\cdot C-1=\dfrac{2n+2}{n-3}-1=\dfrac{2n+2-n+3}{n-3}=\dfrac{n+5}{n-3}\)
Để A là số nguyên thì \(n-3+8⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1;11;-5\right\}\)
c: Để C>0 thì \(\dfrac{n+1}{n-3}>0\)
=>n>3 hoặc n<-1
Để C<0 thì \(\dfrac{n+1}{n-3}< 0\)
hay -1<n<3