Bài 1Cho \(F=3^1+3^2+3^3+...+\)\(3^{100}\).Chứng minh rằng \(2F+3\)không phải là số chính phương
Bài 2;Viết liên tiếp ừ 1 đến 12 được số \(H=1234....1112\).Số H có thể có 81 ước được không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
f+1 = 1 + 3^1 + 3^2 + 3^3 + ... + 3^100
3(f+1) = 3 + 3^2 + 3^3+ 3^4 + ... + 3^101
3(f+1) = (1 + 3 + 3^2 + 3^3 + 3^4 + ... + 3^100) + (3^101 - 1)
3(f+1) = (f+1) + (3^101 - 1)
2(f+1) = 3^101 - 1
2f + 2 = 3^101 - 1
2f + 3 = 3^101
2f + 3 = (3^4)^25 . 3
2f + 3 = \(\overline{...1}^{25}\). 3
2f + 3 = \(\overline{..1}\). 3
2f+3 = \(\overline{...3}\)
Mà số chính phương không có tận cùng là chữ số 3 nên 2f+3 không phải là số chính phương
Hơi khó hiểu tí !
Ta có :F = 3^1 + 3^2 + 3^3 + ... + 3^100
nên 3F = 3^2 + 3^3 + 3^4 + ... + 3^101 => 3F - F = 3^101 - 3
Do đó 2F + 3 = 3^101 - 3 + 3 = 3^101 = 3^100.3 = (3^50)^2.3 không là số chính phương, vì 3 không phải là số chính phương.
mình tính ra tổng S có tận cùng là 1 và 6 có đúng k ? nếu đúng thì kết luận như thế nào?
Bài 1:
a ) Ta có : A là tổng các số hạng chia hết cho 3 => A \(⋮\)3
A có 3 không chia hết cho 9 => A không chia hết cho 9
=> A \(⋮\)3 nhưng không chia hết cho 9
=> A không phải là số chính phương
Bài 2:
Gọi 2 số lẻ có dạng 2k+1 và 2q+1 (k,q thuộc N)
Có : A = (2k+1)^2+(2q+1)^2
= 4k^2+4k+1+4q^2+4q+1
= 4.(k^2+k+q^2+q)+2
Ta thấy A chia hết cho 2 nguyên tố
Lại có : 4.(q^2+q+k^2+k) chia hết cho 4 mà 2 ko chia hết cho 4 => A ko chia hết cho 4
=> A chia hết cho 2 nguyên tố mà A ko chia hết cho 4 = 2^2
=> A ko là số chính phương
=> ĐPCM
Bài 1 : Ta có ;\(F=3^1+3^2+3^3+...+\)\(3^{100}\)
nên \(3F=3^2+3^3+3^4+...+3^{101}\)\(\Rightarrow3F-F=3^{101}-3\)
Do đó : \(2F+3=3^{101}-3+3=3^{101}=3^{100}.3=\left(3^{50}\right)^2.3\)không là số chính phương ,vì 3 không phải là số chính phương
Bài 2 :Gỉa sử H có 81 ước
Vì số lượng các ước của H là 81 ( là số lẻ ) nên H là số chính phương (1)
Mặt khác :tổng các chữ số của H là :
\(1+2+3+...+9+\left(1+0\right)+\left(1+1\right)+\left(1+2\right)\)
Vì \(51⋮3\)nhưng 51 không chia hết cho 9 nên H chia hết cho 3 nhưng H không chia hết cho 9 ,do đó H không là số chính phương :mâu thuẫn với (1)
Vậy H khong thể có 11 ước
Chúc bạn học tốt ( -_- )
Bài 1 :
F = 31 + 32 + ... + 3100
=> 3F = 32 + 33 + ... + 3101
=> 2F = ( 32 + 33 + ... + 3101 ) - ( 31 + 32 + ... + 3100 ) = 3101 - 31
=> 2F + 3 = 3101 = 3100 . 3 = ( 350 )2 . 3 ko là số chính phương vì 3 ko là số chính phương