K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

\(a^2=bc\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

12 tháng 12 2017

Ta có : a2 = bc \(\Rightarrow\) \(\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)\(\Rightarrow\)\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)

30 tháng 9 2018

Ta có a2 = bc 

<=> a . a = b .c 

<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)

\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)

(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

10 tháng 6 2017

Ta có:

\(a^2\) \(=b.c\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

10 tháng 10 2017

Ta có:

\(a^2=b.c\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-c}{b-a}\)

\(Từ\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{c+a}=\dfrac{c+a}{c-a}\)

\(\)Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)=>(a+b)(c-a)=(c+a)(a-b)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=>đpcm

8 tháng 12 2015

\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\).

Ta có: \(a^2=bc\)

\(\Leftrightarrow a\cdot a=b\cdot c\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{a}\)

\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

\(\Leftrightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

hay \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)

15 tháng 10 2015

\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\)

\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)

=>đpcm

15 tháng 10 2015

Có a2 = bc 

=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> Đpcm