Chứng minh rằng nếu \(a^2=bc\)(với \(a\ne b;a\ne c\)) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a2 = bc \(\Rightarrow\) \(\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)\(\Rightarrow\)\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)
Ta có a2 = bc
<=> a . a = b .c
<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)
\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)
(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)
Ta có:
\(a^2\) \(=b.c\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
Ta có:
\(a^2=b.c\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-c}{b-a}\)
\(Từ\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{c+a}=\dfrac{c+a}{c-a}\)
\(\)Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)=>(a+b)(c-a)=(c+a)(a-b)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=>đpcm
Ta có: \(a^2=bc\)
\(\Leftrightarrow a\cdot a=b\cdot c\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{a}\)
\(\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
\(\Leftrightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)
hay \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)
\(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{a+c}{b+a}=\frac{c-a}{a-b}\)
\(\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a+c\right)\left(a-b\right)\Rightarrow\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
=>đpcm
\(a^2=bc\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)