Cm rằng phương trình 2x2 - (m+4)x + m = 0 luôn có nghiệm
Ai biết làm giải dùm mình với đc ko ạ ~~
Mình cảm ơn nhìu <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x+2-2m=0\)
=>\(2m=x^3-3x+2\)
Chúng ta sẽ vẽ đồ thị \(y=x^3-3x+2\)
Trên đồ thị, chúng ta sẽ thấy khi \(y\in\left(0;4\right)\) thì \(y=x^3-3x+2\) sẽ cho 3 nghiệm phân biệt
=>\(2m\in\left(0;4\right)\)
=>\(m\in\left(0;2\right)\)
=>Chọn B
-2\(x^2+xy^2\) (\(xy^2\) là \(1xy^2\) )
=(\(-2+1\)) (\(x^2.x\)) . \(y^2\) (Ta nhân số theo số và phần biến theo phần biến)
= -1\(x^3y^2\)
Tại \(x\)= -1 ; \(y\) = - 4 ta có
-1.(-1)\(^3\).(-4)\(^2\)= -1.(-1). 16 = 16
Vậy tại x= -1 ; y = - 4 biểu thức -2\(x^2+xy^2\) là 16
\(-x^2y+2y^2\) (\(-x^2y\) là \(-1x^2y\))
= (-1+2). \(x^2.\left(y.y^2\right)\)
= 1\(x^2y^3\)
Tại x= 0 ; y = - 2 ta có
1.\(\left(0\right)^2.\left(-2\right)^3\)= 1. 0. -8 = 0 (0 nhân với số nào cũng bằng 0)
Vậy tại x= 0 ; y = - 2 biểu thức \(-x^2y+2y^2\) là 0
NHỮNG CHỖ NÀO CÓ IN ĐẬM VÀ NGHIÊNG LÀ KHÔNG GHI NHA
Thay x=7+căn 2022 vào pt, ta được:
\(49+14\sqrt{2022}+2022-7-\sqrt{2022}+3m-2=0\)
=>\(3m+2062+13\sqrt{2022}=0\)
=.\(m=\dfrac{-2062-13\sqrt{2022}}{3}\)
2x2 - ( m + 4 )x + m = 0
Δ = b2 - 4ac = ( m + 4 )2 - 8m = m2 + 8m + 16 - 8m = m2 + 16
Vì m2 + 16 ≥ 16 > 0 ∀ m => Δ ≥ 16 > 0
Vậy phương trình luôn có nghiệm ( đpcm )